1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
|
/*
* $XFree86: xc/programs/Xserver/fb/fbtrap.c,v 1.10 2002/09/27 00:31:24 keithp Exp $
*
* Copyright 2000 University of Southern California
*
* Permission to use, copy, modify, distribute, and sell this software
* and its documentation for any purpose is hereby granted without
* fee, provided that the above copyright notice appear in all copies
* and that both that copyright notice and this permission notice
* appear in supporting documentation, and that the name of University
* of Southern California not be used in advertising or publicity
* pertaining to distribution of the software without specific,
* written prior permission. University of Southern California makes
* no representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied
* warranty.
*
* University of Southern California DISCLAIMS ALL WARRANTIES WITH
* REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL SuSE BE LIABLE FOR
* ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN
* AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING
* OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
* SOFTWARE.
*
* Author: Carl Worth, USC, Information Sciences Institute */
#include "fb.h"
#ifdef RENDER
#include "picturestr.h"
#include "mipict.h"
#include "fbpict.h"
#ifdef DEBUG
#include <stdio.h>
#include <assert.h>
#define ASSERT(e) assert(e)
#endif
#ifndef ASSERT
#define ASSERT(e)
#endif
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define MAX_AREA 0x80000000
/*
* A RationalPoint is an exact position along one of the trapezoid
* edges represented by an approximate position (x,y) and two error
* terms (ex_dy, ey_dx). The error in X is multiplied by the Y
* dimension of the line while the error in Y is multiplied by the
* X dimension of the line, allowing an exact measurement of the
* distance from (x,y) to the line.
*
* Generally, while walking an edge, one of ex_dy/ey_dx will be zero
* indicating that the position error is held in the other.
*/
typedef struct {
xFixed x;
xFixed ex_dy;
xFixed y;
xFixed ey_dx;
} RationalPoint;
/*
* Edges are walked both horizontally and vertically
* They are walked vertically to get to a particular row
* of pixels, and then walked horizontally within that row
* to compute pixel coverage.
*
* Edges are always walked from top to bottom and from
* left to right. This means that for lines moving leftwards
* from top to bottom, the left to right walking actually moves
* backwards along the line with respect to the top to bottom
* walking.
*/
/*
* A RationalRow represents the two positions where
* an edge intersects a row of pixels. This is used
* to walk an edge vertically
*/
typedef struct {
RationalPoint top; /* intersection at top of row */
RationalPoint bottom; /* intersection at bottom of row */
RationalPoint pixel_top; /* intersection at top of pixel */
} RationalRow;
/*
* A RationalCol represents the two positions where
* an edge intersects a column of pixels
*/
typedef struct {
RationalPoint left; /* intersection at left of column */
RationalPoint right; /* intersection at right of column */
} RationalCol;
/*
Here are some thoughts on line walking:
Conditions: c2.x - c1.x = 1
r2.y - r1.y = 1
A B C D E F G H
c1\ c1 c2 /c2
r1 r1 |\ \ r1 r1 / r1/| r1 r1
\-+---+ \-+---+ +-\-+ +\--+ +--/+ +-/-+ +---+-/ +---+-/
\| | `.c1 | |r1\| | \ | | / | |/ | | .' | |/
c1\ | |`-.|c2 | \c2 | | | | | | c1/ | c1|,_/|c2 | /c2
|\ | | `. | |\ | \ | | / | /| | ./ | | /|
+-\-+ +---+-\ +---+-\ +--\+ +/--+ /-+---+ /-+---+ +-/-+
r2\| r2 r2 r2\ /r2 r2 r2 |/r2
\c2 c2 c1 c1/
Bottom Right Right Bottom Top Top Right Right
State transitions:
A -> C, D E -> E, F
B -> A, B F -> G, H
C -> A, B G -> G, H
D -> C, D H -> E, F
*/
/*
* Values for PixelWalk.depart. Top and Bottom can have the same value
* as only one mode is possible given a line of either positive or
* negative slope. These mark the departure edge while walking
* rightwards across columns.
*/
typedef enum _departure {
DepartTop = 0, /* edge exits top of pixel */
DepartBottom = 0, /* edge exits bottom of pixel */
DepartRight = 1 /* edge exits right edge of pixel */
} Departure;
/*
* PixelWalk
*
* This structure holds state to walk a single edge down the trapezoid.
*
* The edge is walked twice -- once by rows and once by columns.
* The two intersections of the pixel by the edge are then set
* from either the row or column position, depending on which edge
* is intersected.
*
* Note that for lines moving left, walking by rows moves down the
* line (increasing y) while walking by columns moves up the line
* (decreasing y).
*/
typedef struct {
xFixed dx;
xFixed ey_thresh;
xFixed dy;
xFixed ex_thresh;
Departure depart;
/* slope */
xFixed m;
xFixed em_dx;
xFixed y_correct;
xFixed ey_correct;
/* Inverse slope. Does this have a standard symbol? */
xFixed p;
xFixed ep_dy;
xFixed x_correct;
xFixed ex_correct;
/* Trapezoid bottom, used to limit walking to the last row */
xFixed bottom;
/*
* Current edge positions along pixel rows and columns
*/
RationalRow row;
RationalCol col;
/*
* The three pixel intersection points, copied from the appropriate
* row or column position above
*/
RationalPoint p_pixel_top;
RationalPoint p_trap_top;
RationalPoint p_trap_bottom;
} PixelWalk;
#if 0
#ifdef GCC
#define INLINE inline
#endif
#endif
#ifndef INLINE
#define INLINE
#endif
/*
* Step 'pt' vertically to 'newy'.
*/
static INLINE void
pixelWalkMovePointToRow (PixelWalk *pw, RationalPoint *pt, xFixed newy)
{
xFixed_32_32 oex;
xFixed xoff;
/* X error of old X position and new Y position */
oex = (xFixed_32_32) pw->dx * (newy - pt->y) - pt->ey_dx + pt->ex_dy;
/* amount to step X by */
xoff = oex / pw->dy;
/* step X */
pt->x = pt->x + xoff;
/* set new X error value for new X position and new Y positition */
pt->ex_dy = oex - (xFixed_32_32) pw->dy * xoff;
/* set new Y position, set Y error to zero */
pt->y = newy;
pt->ey_dx = 0;
}
/*
* Step 'pt' horizontally to 'newx'
*/
static INLINE void
pixelWalkMovePointToCol (PixelWalk *pw, RationalPoint *pt, xFixed newx)
{
xFixed_32_32 oey;
xFixed yoff;
/* Special case vertical lines to arbitrary y */
if (pw->dx == 0)
{
pt->x = newx;
pt->ex_dy = 0;
pt->y = 0;
pt->ey_dx = 0;
}
else
{
/* Y error of old Y position and new X position */
oey = (xFixed_32_32) pw->dy * (newx - pt->x) - pt->ex_dy + pt->ey_dx;
/* amount to step Y by */
yoff = oey / pw->dx;
/* step Y */
pt->y = pt->y + yoff;
/* set new Y error value for new Y position and new X position */
pt->ey_dx = oey - (xFixed_32_32) pw->dx * yoff;
/* set new X position, set X error to zero */
pt->x = newx;
pt->ex_dy = 0;
}
}
/*
* Step the 'row' element of 'pw' vertically
* (increasing y) by one whole pixel
*/
static INLINE void
pixelWalkStepRow (PixelWalk *pw)
{
xFixed y_next = xFixedFloor (pw->row.bottom.y) + xFixed1;
if (y_next > pw->bottom)
y_next = pw->bottom;
/* pw.row.top.y < pw.row.bottom.y */
pw->row.top = pw->row.bottom;
if (y_next - pw->row.bottom.y == xFixed1)
{
pw->row.pixel_top = pw->row.bottom;
pw->row.bottom.y += xFixed1;
pw->row.bottom.x += pw->p;
pw->row.bottom.ex_dy += pw->ep_dy;
if (abs (pw->row.bottom.ex_dy) > pw->ex_thresh)
{
pw->row.bottom.x += pw->x_correct;
pw->row.bottom.ex_dy += pw->ex_correct;
}
}
else
{
pixelWalkMovePointToRow (pw, &pw->row.pixel_top,
xFixedCeil (y_next) - xFixed1);
pixelWalkMovePointToRow (pw, &pw->row.bottom, y_next);
}
}
/*
* Step the 'col' element of 'pw' horizontally
* (increasing x) by one whole pixel
*/
static INLINE void
pixelWalkStepCol (PixelWalk *pw)
{
/* pw.col.p1.x < pw.col.p2.x */
/*
* Copy the current right point into the left point
*/
pw->col.left = pw->col.right;
/*
* Now incrementally walk across the pixel
*/
pw->col.right.x += xFixed1;
pw->col.right.y += pw->m;
pw->col.right.ey_dx += pw->em_dx;
if (pw->col.right.ey_dx > pw->ey_thresh)
{
pw->col.right.y += pw->y_correct;
pw->col.right.ey_dx += pw->ey_correct;
}
}
/*
* Walk to the nearest edge of the next pixel, filling in both p1 and
* p2 as necessary from either the row or col intersections.
*
* The "next" pixel is defined to be the next pixel intersected by the
* line with pixels visited in raster scan order, (for the benefit of
* cache performance). For lines with positive slope it is easy to
* achieve raster scan order by simply calling StepCol for each pixel
* in a given scanline, then calling StepRow once at the end of each
* scanline.
*
* However, for lines of negative slope where the magnitude of dx is
* greater than dy, a little more work needs to be done. The pixels of
* a particular scanline will be visited by succesive calls to StepCol
* as before. This will effectively step "up" the line as we scan from
* left to right. But, the call to StepRow at the end of the scan line
* will step "down" the line and the column information will be
* invalid at that point.
*
* For now, I fix up the column of all negative slope lines by calling
* MovePointToCol at the end of each scanline. However, this is an
* extremely expensive operation since it involves a 64-bit multiply
* and a 64-bit divide. It would be much better, (at least as long as
* abs(dx) is not much greater than dy), to instead step the col
* backwards as many times as necessary. Or even better, we could
* simply restore col to the position it began at when we started the
* scanline, then simply step it backwards once. That would give a
* performance benefit for lines with slope of any magnitude.
*/
static INLINE void
pixelWalkNextPixel (PixelWalk *pw)
{
if (pw->dx < 0)
{
/*
* left moving lines
*
* Check which pixel edge we're departing from
*
* Remember that in this case (dx < 0), the 'row' element of 'pw'
* walks down the line while 'col' walks up
*/
if (pw->depart == DepartTop)
{
/*
* The edge departs the row at this pixel, the
* next time it gets used will be for the next row
*
* Step down one row and then recompute the
* column values to start the next row of
* pixels
*/
pixelWalkStepRow(pw);
/*
* Set column exit pixel
*/
pixelWalkMovePointToCol(pw, &pw->col.right, xFixedFloor(pw->row.bottom.x));
/*
* This moves the exit pixel to the entry pixel
* and computes the next exit pixel
*/
pixelWalkStepCol(pw);
/*
* The first pixel on the next row will always
* be entered from below, set the lower
* intersection of this edge with that pixel
*/
pw->p_trap_bottom = pw->row.bottom;
}
else /* pw->depart == DepartRight */
{
/*
* easy case -- just move right one pixel
*/
pixelWalkStepCol(pw);
/*
* Set the lower intersection of the edge with the
* pixel -- that's just where the edge entered
* the pixel from the left
*/
pw->p_trap_bottom = pw->col.left;
}
/*
* Now compute which edge the pixel
* is departing from
*/
if (pw->row.top.x <= pw->col.right.x)
{
/*
* row intersection is left of column intersection,
* that means the edge hits the top of the pixel
* before it hits the right edge
*/
pw->p_trap_top = pw->row.top;
pw->depart = DepartTop;
/*
* Further check to see whether the edge
* leaves the right or top edge of the
* whole pixel
*/
if (pw->row.pixel_top.x <= pw->col.right.x)
pw->p_pixel_top = pw->row.pixel_top;
else
pw->p_pixel_top = pw->col.right;
}
else
{
/*
* Row intersection is right of colum intersection,
* that means the edge hits the right edge of the
* pixel first
*/
pw->p_trap_top = pw->col.right;
pw->p_pixel_top = pw->col.right;
pw->depart = DepartRight;
}
}
else
{
/*
* right moving lines
*
* Check which edge we're departing from
*
* In the dx >= 0 case, the row and col elements both
* walk downwards
*/
if (pw->depart == DepartBottom)
{
/*
* The edge departs the row at this pixel,
* the next time it gets used will be for the
* next row
*
* Step down one row and (maybe) over one
* column to prepare for the next row
*/
if (pw->row.bottom.x == pw->col.right.x)
{
/*
* right through the corner of the pixel,
* adjust the column
*/
pixelWalkStepCol(pw);
}
pixelWalkStepRow(pw);
/*
* Set the upper intersection of the edge with
* the pixel, the first pixel on the next
* row is always entered from the top
*/
pw->p_trap_top = pw->row.top;
pw->p_pixel_top = pw->row.pixel_top;
}
else /* pw->depart == DepartRight */
{
/*
* Easy case -- move right one
* pixel
*/
pixelWalkStepCol(pw);
/*
* Set the upper intersection of the edge
* with the pixel, that's along the left
* edge of the pixel
*/
pw->p_trap_top = pw->col.left;
pw->p_pixel_top = pw->col.left;
}
/*
* Now compute the exit edge and the
* lower intersection of the edge with the pixel
*/
if (pw->row.bottom.x <= pw->col.right.x)
{
/*
* Hit the place where the edge leaves
* the pixel, the lower intersection is
* where the edge hits the bottom
*/
pw->p_trap_bottom = pw->row.bottom;
pw->depart = DepartBottom;
}
else
{
/*
* The edge goes through the
* next pixel on the row,
* the lower intersection is where the
* edge hits the right side of the pixel
*/
pw->p_trap_bottom = pw->col.right;
pw->depart = DepartRight;
}
}
}
/*
* Compute the first pixel intersection points
* and the departure type from that pixel
*/
static void
pixelWalkFirstPixel (PixelWalk *pw)
{
if (pw->dx < 0)
{
if (pw->row.top.x <= pw->col.right.x)
{
/*
* leaving through the top.
* upper position is the upper point of
* the 'row' element
*/
pw->depart = DepartTop;
pw->p_trap_top = pw->row.top;
/*
* further check for pixel top
*/
if (pw->row.pixel_top.x <= pw->col.right.x)
pw->p_pixel_top = pw->row.pixel_top;
else
pw->p_pixel_top = pw->col.right;
}
else
{
/*
* leaving through the right side
* upper position is the right point of
* the 'col' element
*/
pw->depart = DepartRight;
pw->p_trap_top = pw->col.right;
pw->p_pixel_top = pw->col.right;
}
/*
* Now find the lower pixel intersection point
*/
if (pw->row.bottom.x >= pw->col.left.x)
/*
* entering through bottom,
* lower position is the bottom point of
* the 'row' element
*/
pw->p_trap_bottom = pw->row.bottom;
else
/*
* entering through left side,
* lower position is the left point of
* the 'col' element
*/
pw->p_trap_bottom = pw->col.left;
}
else
{
if (pw->row.bottom.x <= pw->col.right.x)
{
/*
* leaving through the bottom (or corner).
* lower position is the lower point of
* the 'row' element
*/
pw->depart = DepartBottom;
pw->p_trap_bottom = pw->row.bottom;
}
else
{
/*
* leaving through the right side
* lower position is the right point of
* the 'col' element
*/
pw->depart = DepartRight;
pw->p_trap_bottom = pw->col.right;
}
/*
* Now find the upper pixel intersection point
*/
if (pw->row.top.x >= pw->col.left.x)
{
/*
* entering through the top (or corner),
* upper position is the top point
* of the 'row' element
*/
pw->p_trap_top = pw->row.top;
/*
* further check for pixel entry
*/
if (pw->row.pixel_top.x >= pw->col.left.x)
pw->p_pixel_top = pw->row.pixel_top;
else
pw->p_pixel_top = pw->col.left;
}
else
{
/*
* entering through the left side,
* upper position is the left point of
* the 'col' element
*/
pw->p_trap_top = pw->col.left;
pw->p_pixel_top = pw->col.left;
}
}
}
static void
pixelWalkInit (PixelWalk *pw, xLineFixed *line, xFixed top_y, xFixed bottom_y)
{
xFixed_32_32 dy_inc, dx_inc;
xFixed next_y;
xFixed left_x;
xPointFixed *top, *bot;
next_y = xFixedFloor (top_y) + xFixed1;
if (next_y > bottom_y)
next_y = bottom_y;
/*
* Orient lines top down
*/
if (line->p1.y < line->p2.y)
{
top = &line->p1;
bot = &line->p2;
}
else
{
top = &line->p2;
bot = &line->p1;
}
pw->dx = bot->x - top->x;
pw->ey_thresh = abs(pw->dx >> 1);
pw->dy = bot->y - top->y;
pw->ex_thresh = pw->dy >> 1;
/*
* Set step values for walking lines
*/
if (pw->dx < 0)
{
pw->x_correct = -1;
pw->ex_correct = pw->dy;
pw->y_correct = -1;
pw->ey_correct = pw->dx;
}
else
{
pw->x_correct = 1;
pw->ex_correct = -pw->dy;
pw->y_correct = 1;
pw->ey_correct = -pw->dx;
}
pw->bottom = bottom_y;
/*
* Compute Bresenham values for walking edges incrementally
*/
dy_inc = (xFixed_32_32) xFixed1 * pw->dy; /* > 0 */
if (pw->dx != 0)
{
pw->m = dy_inc / pw->dx; /* sign(dx) */
pw->em_dx = dy_inc - (xFixed_32_32) pw->m * pw->dx; /* > 0 */
}
else
{
/* Vertical line. Setting these to zero prevents us from
having to put any conditions in pixelWalkStepCol. */
pw->m = 0;
pw->em_dx = 0;
}
dx_inc = (xFixed_32_32) xFixed1 * (xFixed_32_32) pw->dx; /* sign(dx) */
pw->p = dx_inc / pw->dy; /* sign(dx) */
pw->ep_dy = dx_inc - (xFixed_32_32) pw->p * pw->dy; /* sign(dx) */
/*
* Initialize 'row' for walking down rows
*/
pw->row.bottom.x = top->x;
pw->row.bottom.ex_dy = 0;
pw->row.bottom.y = top->y;
pw->row.bottom.ey_dx = 0;
/*
* Initialize 'pixel_top' to be on the line for
* the first step
*/
pw->row.pixel_top = pw->row.bottom;
/*
* Move to the pixel above the 'top_y' coordinate,
* first setting 'bottom' and then using StepRow
* which moves that to 'top' and computes the next 'bottom'
*/
pixelWalkMovePointToRow(pw, &pw->row.bottom, top_y);
pixelWalkStepRow(pw);
/*
* Initialize 'col' for walking across columns
*/
pw->col.right.x = top->x;
pw->col.right.ex_dy = 0;
pw->col.right.y = top->y;
pw->col.right.ey_dx = 0;
/*
* First set the column to the left most
* pixel hit by the row
*/
if (pw->dx < 0)
left_x = pw->row.bottom.x;
else
left_x = pw->row.top.x;
pixelWalkMovePointToCol(pw, &pw->col.right, xFixedFloor (left_x));
pixelWalkStepCol(pw);
/*
* Compute first pixel intersections and the
* first departure state
*/
pixelWalkFirstPixel (pw);
}
#define RoundShift(a,b) (((a) + (1 << ((b) - 1))) >> (b))
#define MaxAlpha(depth) ((1 << (depth)) - 1)
#define AreaAlpha(area, depth) (RoundShift (RoundShift (area, depth) * \
MaxAlpha (depth), \
(31 - depth)))
/*
Pixel coverage from the upper-left corner bounded by one horizontal
bottom line (bottom) and one line defined by two points, (x1,y1) and
(x2,y2), which intersect the pixel. y1 must be less than y2. There
are 8 cases yielding the following area calculations:
A B C D E F G H
+---+ +---+ +-1-+ +1--+ +--1+ +-1-+ +---+ +---+
| | 1 | | \| | \ | | / | |/ | | 1 | |
1 | |`-.| | 2 | | | | | | 2 | |,_/| | 1
|\ | | 2 | | | \ | | / | | | 2 | | /|
+-2-+ +---+ +---+ +--2+ +2--+ +---+ +---+ +-2-+
A: (1/2 * x2 * (y2 - y1))
B: (1/2 * x2 * (y2 - y1)) + (bottom - y2) * x2
C: (1/2 * (x1 + x2) * y2 ) + (bottom - y2) * x2
D: (1/2 * (x1 + x2) * y2 )
E: (1/2 * (x1 + x2) * y2 )
F: (1/2 * x1 * y2 )
G: (1/2 * x1 * (y2 - y1)) + x1 * y1
H: (1/2 * (x1 + x2) * (y2 - y1)) + x1 * y1
The union of these calculations is valid for all cases. Namely:
(1/2 * (x1 + x2) * (y2 - y1)) + (bottom - y2) * x2 + x1 * y1
An exercise for later would perhaps be to optimize the calculations
for some of the cases above. Specifically, it's possible to eliminate
multiplications by zero in several cases, leaving a maximum of two
multiplies per pixel calculation. (This is even more promising now
that the higher level code actually computes the exact same 8 cases
as part of its pixel walking).
But, for now, I just want to get something working correctly even if
slower. So, we'll use the non-optimized general equation.
*/
/* 1.16 * 1.16 -> 1.31 */
#define AREA_MULT(w, h) ( (xFixed_1_31) (((((xFixed_1_16)w)*((xFixed_1_16)h) + 1) >> 1) | (((xFixed_1_16)w)&((xFixed_1_16)h)&0x10000) << 15))
/* (1.16 + 1.16) / 2 -> 1.16 */
#define WIDTH_AVG(x1,x2) (((x1) + (x2) + 1) >> 1)
#define SubPixelArea(x1, y1, x2, y2, bottom) \
(xFixed_1_31) ( \
AREA_MULT((x1), (y1)) \
+ AREA_MULT(WIDTH_AVG((x1), (x2)), (y2) - (y1))\
+ AREA_MULT((x2), (bottom) - (y2)) \
)
/*
static xFixed_1_31
SubPixelArea (xFixed_1_16 x1,
xFixed_1_16 y1,
xFixed_1_16 x2,
xFixed_1_16 y2,
xFixed_1_16 bottom)
{
xFixed_1_16 x_trap;
xFixed_1_16 h_top, h_trap, h_bot;
xFixed_1_31 area;
x_trap = WIDTH_AVG(x1,x2);
h_top = y1;
h_trap = (y2 - y1);
h_bot = (bottom - y2);
area = AREA_MULT(x1, h_top) +
AREA_MULT(x_trap, h_trap) +
AREA_MULT(x2, h_bot);
return area;
}
*/
#define SubPixelAlpha(x1, y1, x2, y2, bottom, depth) \
( \
AreaAlpha( \
SubPixelArea((x1), (y1), (x2), (y2), (bottom)), \
(depth) \
) \
)
/*
static int
SubPixelAlpha (xFixed_1_16 x1,
xFixed_1_16 y1,
xFixed_1_16 x2,
xFixed_1_16 y2,
xFixed_1_16 bottom,
int depth)
{
xFixed_1_31 area;
area = SubPixelArea(x1, y1, x2, y2, bottom);
return AreaAlpha(area, depth);
}
*/
/* Alpha of a pixel above a given horizontal line */
#define AlphaAbove(pixel_y, line_y, depth) \
( \
AreaAlpha(AREA_MULT((line_y) - (pixel_y), xFixed1), depth) \
)
static int
RectAlpha(xFixed pixel_y, xFixed top, xFixed bottom, int depth)
{
if (depth == 1)
return top == pixel_y ? 1 : 0;
else
return (AlphaAbove (pixel_y, bottom, depth) -
AlphaAbove (pixel_y, top, depth));
}
/*
* Pixel coverage from the left edge bounded by one horizontal lines,
* (top and bottom), as well as one PixelWalk line.
*/
static int
AlphaAboveLeft(RationalPoint *upper,
RationalPoint *lower,
xFixed bottom,
xFixed pixel_x,
xFixed pixel_y,
int depth)
{
return SubPixelAlpha(upper->x - pixel_x,
upper->y - pixel_y,
lower->x - pixel_x,
lower->y - pixel_y,
bottom - pixel_y,
depth);
}
/*
Pixel coverage from the left edge bounded by two horizontal lines,
(top and bottom), as well as one line two points, p1 and p2, which
intersect the pixel. The following condition must be true:
p2.y > p1.y
*/
/*
lr
|\
+--|-\-------+
| a| b\ |
=======|===\========== top
| c| d \ |
=======|=====\======== bot
| | \ |
+--|-------\-+
alpha(d) = alpha(cd) - alpha(c) = alpha(abcd) - alpha(ab) - (alpha(ac) - alpha(c))
alpha(d) = pixelalpha(top, bot, right) - pixelalpha(top, bot, left)
pixelalpha(top, bot, line) = subpixelalpha(bot, line) - subpixelalpha(top, line)
*/
static int
PixelAlpha(xFixed pixel_x,
xFixed pixel_y,
xFixed top,
xFixed bottom,
PixelWalk *pw,
int depth)
{
int alpha;
#ifdef DEBUG
fprintf(stderr, "alpha (%f, %f) - (%f, %f) = ",
(double) pw->p1.x / (1 << 16),
(double) pw->p1.y / (1 << 16),
(double) pw->p2.x / (1 << 16),
(double) pw->p2.y / (1 << 16));
fflush(stderr);
#endif
/*
* Sharp polygons are different, alpha is 1 if the
* area includes the pixel origin, else zero, in
* the above figure, only 'a' has alpha 1
*/
if (depth == 1)
{
alpha = 0;
if (top == pixel_y && pw->p_pixel_top.x != pixel_x)
alpha = 1;
}
else
{
alpha = (AlphaAboveLeft(&pw->p_pixel_top, &pw->p_trap_bottom,
bottom, pixel_x, pixel_y, depth)
- AlphaAboveLeft(&pw->p_pixel_top, &pw->p_trap_top,
top, pixel_x, pixel_y, depth));
}
#ifdef DEBUG
fprintf(stderr, "0x%x => %f\n",
alpha,
(double) alpha / ((1 << depth) -1 ));
fflush(stderr);
#endif
return alpha;
}
#define INCREMENT_X_AND_PIXEL \
{ \
pixel_x += xFixed1; \
(*mask.over) (&mask); \
}
/* XXX: What do we really want this prototype to look like? Do we want
separate versions for 1, 4, 8, and 16-bit alpha? */
#define saturateAdd(t, a, b) (((t) = (a) + (b)), \
((CARD8) ((t) | (0 - ((t) >> 8)))))
#define addAlpha(mask, depth, alpha, temp) (\
(*(mask)->store) ((mask), (alpha == (1 << depth) - 1) ? \
0xff000000 : \
(saturateAdd (temp, \
alpha << (8 - depth), \
(*(mask)->fetch) (mask) >> 24) << 24)) \
)
void
fbRasterizeTrapezoid (PicturePtr pMask,
xTrapezoid *pTrap,
int x_off,
int y_off)
{
xTrapezoid trap = *pTrap;
int alpha, temp;
FbCompositeOperand mask;
int depth = pMask->pDrawable->depth;
int max_alpha = (1 << depth) - 1;
int buf_width = pMask->pDrawable->width;
xFixed x_off_fixed = IntToxFixed(x_off);
xFixed y_off_fixed = IntToxFixed(y_off);
xFixed buf_width_fixed = IntToxFixed(buf_width);
PixelWalk left, right;
xFixed pixel_x, pixel_y;
xFixed first_right_x;
xFixed y, y_next;
/* trap.left and trap.right must be non-horizontal */
if (trap.left.p1.y == trap.left.p2.y
|| trap.right.p1.y == trap.right.p2.y) {
return;
}
trap.top += y_off_fixed;
trap.bottom += y_off_fixed;
trap.left.p1.x += x_off_fixed;
trap.left.p1.y += y_off_fixed;
trap.left.p2.x += x_off_fixed;
trap.left.p2.y += y_off_fixed;
trap.right.p1.x += x_off_fixed;
trap.right.p1.y += y_off_fixed;
trap.right.p2.x += x_off_fixed;
trap.right.p2.y += y_off_fixed;
#ifdef DEBUG
fprintf(stderr, "(top, bottom) = (%f, %f)\n",
(double) trap.top / (1 << 16),
(double) trap.bottom / (1 << 16));
#endif
pixelWalkInit(&left, &trap.left, trap.top, trap.bottom);
pixelWalkInit(&right, &trap.right, trap.top, trap.bottom);
/* XXX: I'd still like to optimize this loop for top and
bottom. Only the first row intersects top and only the last
row, (which could also be the first row), intersects bottom. So
we could eliminate some unnecessary calculations from all other
rows. Unfortunately, I haven't found an easy way to do it
without bloating the text, (eg. unrolling a couple iterations
of the loop). So, for sake of maintenance, I'm putting off this
optimization at least until this code is more stable.. */
if (!fbBuildCompositeOperand (pMask, &mask, 0, xFixedToInt (trap.top), FALSE, FALSE))
return;
for (y = trap.top; y < trap.bottom; y = y_next)
{
pixel_y = xFixedFloor (y);
y_next = pixel_y + xFixed1;
if (y_next > trap.bottom)
y_next = trap.bottom;
ASSERT (left.row.top.y == y);
ASSERT (left.row.bottom.y == y_next);
ASSERT (right.row.top.y == y);
ASSERT (right.row.bottom.y == y_next);
pixel_x = xFixedFloor(left.col.left.x);
/*
* Walk pixels on this row that are left of the
* first possibly lit pixel
*
* pixelWalkNextPixel will change .row.top.y
* when the last pixel covered by the edge
* is passed
*/
first_right_x = xFixedFloor(right.col.left.x);
while (right.row.top.y == y && first_right_x < pixel_x)
{
/* these are empty */
pixelWalkNextPixel (&right);
/* step over */
first_right_x += xFixed1;
}
(*mask.set) (&mask, xFixedToInt (pixel_x), xFixedToInt (y));
/*
* Walk pixels on this row intersected by only trap.left
*
*/
while (left.row.top.y == y && pixel_x < first_right_x)
{
alpha = (RectAlpha (pixel_y, y, y_next, depth)
- PixelAlpha(pixel_x, pixel_y, y, y_next, &left, depth));
if (alpha > 0)
{
if (0 <= pixel_x && pixel_x < buf_width_fixed)
addAlpha (&mask, depth, alpha, temp);
}
/*
* Step right
*/
pixelWalkNextPixel(&left);
INCREMENT_X_AND_PIXEL;
}
/*
* Either pixels are covered by both edges or
* there are fully covered pixels on this row
*/
if (pixel_x == first_right_x)
{
/*
* Now walk the pixels on this row intersected
* by both edges
*/
while (left.row.top.y == y && right.row.top.y == y)
{
alpha = (PixelAlpha(pixel_x, pixel_y, y, y_next, &right, depth)
- PixelAlpha(pixel_x, pixel_y, y, y_next, &left, depth));
if (alpha > 0)
{
ASSERT (0 <= alpha && alpha <= max_alpha);
if (0 <= pixel_x && pixel_x < buf_width_fixed)
addAlpha (&mask, depth, alpha, temp);
}
pixelWalkNextPixel(&left);
pixelWalkNextPixel(&right);
INCREMENT_X_AND_PIXEL;
}
/*
* If the right edge is now left of the left edge,
* the left edge will end up only partially walked,
* walk it the rest of the way
*/
while (left.row.top.y == y)
pixelWalkNextPixel(&left);
}
else
{
/*
* Fully covered pixels simply saturate
*/
alpha = RectAlpha (pixel_y, y, y_next, depth);
if (alpha == max_alpha)
{
while (pixel_x < first_right_x)
{
if (0 <= pixel_x && pixel_x < buf_width_fixed)
(*mask.store) (&mask, 0xff000000);
INCREMENT_X_AND_PIXEL;
}
}
else
{
while (pixel_x < first_right_x)
{
ASSERT (0 <= alpha && alpha <= max_alpha);
if (0 <= pixel_x && pixel_x < buf_width_fixed)
addAlpha (&mask, depth, alpha, temp);
INCREMENT_X_AND_PIXEL;
}
}
}
/*
* Finally, pixels intersected only by trap.right
*/
while (right.row.top.y == y)
{
alpha = PixelAlpha(pixel_x, pixel_y, y, y_next, &right, depth);
if (alpha > 0)
{
if (0 <= pixel_x && pixel_x < buf_width_fixed)
addAlpha (&mask, depth, alpha, temp);
}
pixelWalkNextPixel(&right);
INCREMENT_X_AND_PIXEL;
}
}
}
/* Some notes on walking while keeping track of errors in both dimensions:
That's really pretty easy. Your bresenham should be walking sub-pixel
coordinates rather than pixel coordinates. Now you can calculate the
sub-pixel Y coordinate for any arbitrary sub-pixel X coordinate (or vice
versa).
ey: y error term (distance from current Y sub-pixel to line) * dx
ex: x error term (distance from current X sub-pixel to line) * dy
dx: difference of X coordinates for line endpoints
dy: difference of Y coordinates for line endpoints
x: current fixed-point X coordinate
y: current fixed-point Y coordinate
One of ey or ex will always be zero, depending on whether the distance to
the line was measured horizontally or vertically.
In moving from x, y to x1, y1:
(x1 + e1x/dy) - (x + ex/dy) dx
--------------------------- = --
(y1 + e1y/dx) - (y + ey/dx) dy
(x1dy + e1x) - (xdy + ex) = (y1dx + e1y) - (ydx + ey)
dy(x1 - x) + (e1x - ex) = dx(y1-y) + (e1y - ey)
So, if you know y1 and want to know x1:
Set e1y to zero and compute the error from x:
oex = dx(y1 - y) - ey + ex
Compute the number of whole pixels to get close to the line:
wx = oex / dy
Set x1:
Now compute the e1x:
e1x = oex - wx * dy
A similar operation moves to a known y1. Note that this computation (in
general) requires 64 bit arithmetic. I suggest just using the available
64 bit datatype for now, we can optimize the common cases with a few
conditionals. There's some cpp code in fb/fb.h that selects a 64 bit type
for machines that XFree86 builds on; there aren't any machines missing a
64 bit datatype that I know of.
*/
/* Here's a large-step Bresenham for jogging my memory.
void large_bresenham_x_major(x1, y1, x2, y2, x_inc)
{
int x, y, dx, dy, m;
int em_dx, ey_dx;
dx = x2 - x1;
dy = y2 - y1;
m = (x_inc * dy) / dx;
em_dx = (x_inc * dy) - m * dx;
x = x1;
y = y1;
ey = 0;
set(x,y);
while (x < x2) {
x += x_inc;
y += m;
ey_dx += em_dx;
if (ey_dx > dx_2) {
y++;
ey_dx -= dx;
}
set(x,y);
}
}
*/
/* Here are the latest, simplified equations for computing trapezoid
coverage of a pixel:
alpha_from_area(A) = round(2**depth-1 * A)
alpha(o) = 2**depth-1
alpha(a) = alpha_from_area(area(a))
alpha(ab) = alpha_from_area(area(ab))
alpha(b) = alpha(ab) - alpha (a)
alpha(abc) = alpha_from_area(area(abc))
alpha(c) = alpha(abc) - alpha(ab)
alpha(ad) = alpha_from_area(area(ad))
alpha (d) = alpha(ad) - alpha (a)
alpha (abde) = alpha_from_area(area(abde))
alpha (de) = alpha (abde) - alpha (ab)
alpha (e) = alpha (de) - alpha (d)
alpha (abcdef) = alpha_from_area(area(abcdef))
alpha (def) = alpha (abcdef) - alpha (abc)
alpha (f) = alpha (def) - alpha (de)
alpha (adg) = alpha_from_area(area(adg))
alpha (g) = alpha (adg) - alpha (ad)
alpha (abdegh) = alpha_from_area(area(abdegh))
alpha (gh) = alpha (abdegh) - alpha (abde)
alpha (h) = alpha (gh) - alpha (g)
alpha (abcdefghi) = alpha_from_area(area(abcdefghi)) =
alpha_from_area(area(o)) = alpha_from_area(1) = alpha(o)
alpha (ghi) = alpha (abcdefghi) - alpha (abcdef)
alpha (i) = alpha (ghi) - alpha (gh)
*/
/* Latest thoughts from Keith on implementing area/alpha computations:
*** 1.16 * 1.16 -> 1.31 ***
#define AREA_MULT(w,h) ((w)&(h) == 0x10000 ? 0x80000000 : (((w)*(h) + 1) >> 1)
*** (1.16 + 1.16) / 2 -> 1.16 ***
#define WIDTH_AVG(x1,x2) (((x1) + (x2) + 1) >> 1)
xFixed_1_31
SubpixelArea (xFixed_1_16 x1,
xFixed_1_16 x2,
xFixed_1_16 y1,
xFixed_1_16 y2,
xFixed_1_16 bottom)
{
xFixed_1_16 x_trap;
xFixed_1_16 h_top, h_trap, h_bot;
xFixed_1_31 area;
x_trap = WIDTH_AVG(x1,x2);
h_top = y1;
h_trap = (y2 - y1);
h_bot = (bottom - y2);
area = AREA_MULT(x1, h_top) +
AREA_MULT(x_trap, h_trap) +
AREA_MULT(x2, h_bot);
return area;
}
To convert this xFixed_1_31 value to alpha using 32 bit arithmetic:
int
AreaAlpha (xFixed_1_31 area, int depth)
{
return ((area >> bits) * ((1 << depth) - 1)) >> (31 - depth);
}
Avoiding the branch bubble in the AREA_MULT could be done with either:
area = (w * h + 1) >> 1;
area |= ((area - 1) & 0x80000000);
or
#define AREA_MULT(w,h) ((((w)*(h) + 1) >> 1) | ((w)&(h)&0x10000) << 15)
depending on your preference, the first takes one less operation but
can't be expressed as a macro; the second takes a large constant which may
require an additional instruction on some processors. The differences
will be swamped by the cost of the multiply.
*/
#endif /* RENDER */
|