1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
|
/*
* Copyright (C) 1999 AT&T Laboratories Cambridge. All Rights Reserved.
*
* This is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This software is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this software; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
* USA.
*/
/*
* buffer.c - functions to deal with the raw image buffer.
*/
static const char *ID = "$Id: buffer.c,v 1.6 2004/09/09 00:22:33 grmcdorman Exp $";
#include "vncsnapshot.h"
/* jpeglib.h may redefine INT16 */
#define INT16 jpegINT16
#include <jpeglib.h>
#include <stdio.h>
#undef INT16
static void BufferPixelToRGB(unsigned long pixel, int *r, int *g, int *b);
static char * rawBuffer = NULL;
static char bufferBlank = 1;
static char bufferWritten = 0;
#define RAW_BYTES_PER_PIXEL 3 /* size of pixel in raw buffer */
#define MY_BYTES_PER_PIXEL 4 /* size of pixel in VNC buffer */
#define MY_BITS_PER_PIXEL (MY_BYTES_PER_PIXEL*8)
int
AllocateBuffer()
{
unsigned long bytes;
static const short testEndian = 1;
int bigEndian;
/* Determine 'endian' nature of this machine */
/* On big-endian machines, the address of a short (16 bit) is the
* most significant byte (and is therefore 0). On little-endian,
* it is the address of the least significant byte - and is therefore
* 1.
*
* Intel 8x86 (including Pentium) are big-endian. Motorola, PDP-11,
* and Sparc are little-endian.
*/
bigEndian = 0 == *(char *)&testEndian;
//bigEndian = 0;
/* Format is RGBA. Due to the way we store the pixels,
* the 'bigEndian' is the *opposite* of the hardware value.
*/
myFormat.bitsPerPixel = MY_BITS_PER_PIXEL;
myFormat.depth = 24;
myFormat.trueColour = 1;
myFormat.bigEndian = bigEndian;
if (bigEndian) {
myFormat.redShift = 24;
myFormat.greenShift = 16;
myFormat.blueShift = 8;
} else {
myFormat.redShift = 0;
myFormat.greenShift = 8;
myFormat.blueShift = 16;
}
myFormat.redMax = 0xFF;
myFormat.greenMax = 0xFF;
myFormat.blueMax = 0xFF;
bytes = si.framebufferWidth * si.framebufferHeight * myFormat.depth / 8;
rawBuffer = malloc(bytes); /* allocate initialized to 0 */
if (rawBuffer == NULL) {
fprintf(stderr, "Failed to allocate memory frame buffer, %lu bytes\n",
bytes);
return 0;
}
memset(rawBuffer, 0xBA, bytes);
return 1;
}
void
CopyDataToScreen(char *buffer, int x, int y, int w, int h)
{
int start;
int stride;
int row, col;
stride = si.framebufferWidth * RAW_BYTES_PER_PIXEL - w * RAW_BYTES_PER_PIXEL;
start = (x + y * si.framebufferWidth) * RAW_BYTES_PER_PIXEL;
bufferWritten = 1;
for (row = 0; row < h; row++) {
for (col = 0; col < w; col++) {
bufferBlank &= buffer[0] == 0 &&
buffer[1] == 0 &&
buffer[2] == 0;
rawBuffer[start++] = *buffer++;
rawBuffer[start++] = *buffer++;
rawBuffer[start++] = *buffer++;
buffer++; /* ignore 4th byte */
}
start += stride;
}
}
char *
CopyScreenToData(int x, int y, int w, int h)
{
int start;
int stride;
int row, col;
char *buffer;
char *cp;
stride = si.framebufferWidth * RAW_BYTES_PER_PIXEL - w * RAW_BYTES_PER_PIXEL;
start = (x + y * si.framebufferWidth) * RAW_BYTES_PER_PIXEL;
/* Allocate a buffer at the VNC size, not the raw size */
buffer = malloc(h * w * MY_BYTES_PER_PIXEL);
cp = buffer;
for (row = 0; row < h; row++) {
for (col = 0; col < w; col++) {
*cp++ = rawBuffer[start++];
*cp++ = rawBuffer[start++];
*cp++ = rawBuffer[start++];
*cp++ = 0;
}
start += stride;
}
return buffer;
}
void
FillBufferRectangle(int x, int y, int w, int h, unsigned long pixel)
{
int r, g, b;
int start;
int stride;
int row, col;
BufferPixelToRGB(pixel, &r, &g, &b);
bufferBlank &= r == 0 && g == 0 && b == 0;
bufferWritten = 1;
stride = si.framebufferWidth * RAW_BYTES_PER_PIXEL - w * RAW_BYTES_PER_PIXEL;
start = (x + y * si.framebufferWidth) * RAW_BYTES_PER_PIXEL;
for (row = 0; row < h; row++) {
for (col = 0; col < w; col++) {
rawBuffer[start++] = r;
rawBuffer[start++] = g;
rawBuffer[start++] = b;
}
start += stride;
}
}
int
BufferIsBlank()
{
return bufferBlank;
}
int
BufferWritten()
{
return bufferWritten;
}
/*
* Borrowed with very minor modifications from JPEG6 sample code. Error handling
* remains as default (i.e. exit on errors).
*/
void
write_JPEG_file (char * filename, int quality, int width, int height)
{
/* This struct contains the JPEG compression parameters and pointers to
* working space (which is allocated as needed by the JPEG library).
* It is possible to have several such structures, representing multiple
* compression/decompression processes, in existence at once. We refer
* to any one struct (and its associated working data) as a "JPEG object".
*/
struct jpeg_compress_struct cinfo;
/* This struct represents a JPEG error handler. It is declared separately
* because applications often want to supply a specialized error handler
* (see the second half of this file for an example). But here we just
* take the easy way out and use the standard error handler, which will
* print a message on stderr and call exit() if compression fails.
* Note that this struct must live as long as the main JPEG parameter
* struct, to avoid dangling-pointer problems.
*/
struct jpeg_error_mgr jerr;
/* More stuff */
FILE * outfile; /* target file */
JSAMPROW row_pointer[1]; /* pointer to JSAMPLE row[s] */
int row_stride; /* physical row width in image buffer */
/* Step 1: allocate and initialize JPEG compression object */
/* We have to set up the error handler first, in case the initialization
* step fails. (Unlikely, but it could happen if you are out of memory.)
* This routine fills in the contents of struct jerr, and returns jerr's
* address which we place into the link field in cinfo.
*/
cinfo.err = jpeg_std_error(&jerr);
/* Now we can initialize the JPEG compression object. */
jpeg_create_compress(&cinfo);
/* Step 2: specify data destination (eg, a file) */
/* Note: steps 2 and 3 can be done in either order. */
/* Here we use the library-supplied code to send compressed data to a
* stdio stream. You can also write your own code to do something else.
* VERY IMPORTANT: use "b" option to fopen() if you are on a machine that
* requires it in order to write binary files.
*/
if (strcmp(filename, "-") == 0) {
outfile = stdout;
} else {
if ((outfile = fopen(filename, "wb")) == NULL) {
fprintf(stderr, "can't open %s\n", filename);
exit(1);
}
}
jpeg_stdio_dest(&cinfo, outfile);
/* Step 3: set parameters for compression */
/* First we supply a description of the input image.
* Four fields of the cinfo struct must be filled in:
*/
cinfo.image_width = width; /* image width and height, in pixels */
cinfo.image_height = height;
cinfo.input_components = RAW_BYTES_PER_PIXEL; /* # of color components per pixel */
cinfo.in_color_space = JCS_RGB; /* colorspace of input image */
/* Now use the library's routine to set default compression parameters.
* (You must set at least cinfo.in_color_space before calling this,
* since the defaults depend on the source color space.)
*/
jpeg_set_defaults(&cinfo);
/* Now you can set any non-default parameters you wish to.
* Here we just illustrate the use of quality (quantization table) scaling:
*/
jpeg_set_quality(&cinfo, quality, TRUE /* limit to baseline-JPEG values */);
/* VNCSNAPSHOT: Set file colourspace to RGB.
* If it is not set to RGB, colour distortions occur.
*/
jpeg_set_colorspace(&cinfo, JCS_RGB);
/* Step 4: Start compressor */
/* TRUE ensures that we will write a complete interchange-JPEG file.
* Pass TRUE unless you are very sure of what you're doing.
*/
jpeg_start_compress(&cinfo, TRUE);
/* Step 5: while (scan lines remain to be written) */
/* jpeg_write_scanlines(...); */
/* Here we use the library's state variable cinfo.next_scanline as the
* loop counter, so that we don't have to keep track ourselves.
* To keep things simple, we pass one scanline per call; you can pass
* more if you wish, though.
*/
row_stride = width * 3; /* JSAMPLEs per row in image_buffer */
while (cinfo.next_scanline < cinfo.image_height) {
/* jpeg_write_scanlines expects an array of pointers to scanlines.
* Here the array is only one element long, but you could pass
* more than one scanline at a time if that's more convenient.
*/
row_pointer[0] = & rawBuffer[cinfo.next_scanline * row_stride];
(void) jpeg_write_scanlines(&cinfo, row_pointer, 1);
}
/* Step 6: Finish compression */
jpeg_finish_compress(&cinfo);
/* After finish_compress, we can close the output file. */
if (strcmp(filename, "-") != 0) {
fclose(outfile);
}
/* Step 7: release JPEG compression object */
/* This is an important step since it will release a good deal of memory. */
jpeg_destroy_compress(&cinfo);
/* And we're done! */
}
static void
BufferPixelToRGB(unsigned long pixel, int *r, int *g, int *b)
{
*r = (pixel >> myFormat.redShift) & myFormat.redMax;
*b = (pixel >> myFormat.blueShift) & myFormat.blueMax;
*g = (pixel >> myFormat.greenShift) & myFormat.greenMax;
}
void
ShrinkBuffer(long x, long y, long req_width, long req_height)
{
int start;
int stride;
int row, col;
char *cp;
/*
* Don't bother if x and y are zero and the width is the same.
*/
if (x == 0 && y == 0 && req_width == si.framebufferWidth) {
return;
}
/*
* Rather than creating a copy, we just move in-place. Since we are
* doing this from the start of the image, there is no problem
* with overlapping moves.
*/
stride = si.framebufferWidth * RAW_BYTES_PER_PIXEL - req_width * RAW_BYTES_PER_PIXEL;
start = (x + y * si.framebufferWidth) * RAW_BYTES_PER_PIXEL;
cp = rawBuffer;
for (row = 0; row < req_height; row++) {
for (col = 0; col < req_width; col++) {
*cp++ = rawBuffer[start++];
*cp++ = rawBuffer[start++];
*cp++ = rawBuffer[start++];
}
start += stride;
}
}
|