1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
|
/* -*- c++ -*- */
/*
* Copyright 2011 - 2020, 2022 Free Software Foundation, Inc.
*
* This file is part of VOLK
*
* SPDX-License-Identifier: LGPL-3.0-or-later
*/
#include "qa_utils.h"
#include <volk/volk.h>
#include <volk/volk.h> // for volk_func_desc_t
#include <volk/volk_malloc.h> // for volk_free, volk_m...
#include <assert.h> // for assert
#include <stdint.h> // for uint16_t, uint64_t
#include <sys/time.h> // for CLOCKS_PER_SEC
#include <sys/types.h> // for int16_t, int32_t
#include <chrono>
#include <cmath> // for sqrt, fabs, abs
#include <cstring> // for memcpy, memset
#include <ctime> // for clock
#include <iostream> // for cout, cerr
#include <limits> // for numeric_limits
#include <map> // for map, map<>::mappe...
#include <random>
#include <vector> // for vector, _Bit_refe...
template <typename T>
void random_floats(void* buf, unsigned int n, std::default_random_engine& rnd_engine)
{
T* array = static_cast<T*>(buf);
std::uniform_real_distribution<T> uniform_dist(T(-1), T(1));
for (unsigned int i = 0; i < n; i++) {
array[i] = uniform_dist(rnd_engine);
}
}
void load_random_data(void* data, volk_type_t type, unsigned int n)
{
std::random_device rnd_device;
std::default_random_engine rnd_engine(rnd_device());
if (type.is_complex)
n *= 2;
if (type.is_float) {
if (type.size == 8) {
random_floats<double>(data, n, rnd_engine);
} else {
random_floats<float>(data, n, rnd_engine);
}
} else {
switch (type.size) {
case 8:
if (type.is_signed) {
std::uniform_int_distribution<int64_t> uniform_dist(
std::numeric_limits<int64_t>::min(),
std::numeric_limits<int64_t>::max());
for (unsigned int i = 0; i < n; i++)
((int64_t*)data)[i] = uniform_dist(rnd_engine);
} else {
std::uniform_int_distribution<uint64_t> uniform_dist(
std::numeric_limits<uint64_t>::min(),
std::numeric_limits<uint64_t>::max());
for (unsigned int i = 0; i < n; i++)
((uint64_t*)data)[i] = uniform_dist(rnd_engine);
}
break;
case 4:
if (type.is_signed) {
std::uniform_int_distribution<int32_t> uniform_dist(
std::numeric_limits<int32_t>::min(),
std::numeric_limits<int32_t>::max());
for (unsigned int i = 0; i < n; i++)
((int32_t*)data)[i] = uniform_dist(rnd_engine);
} else {
std::uniform_int_distribution<uint32_t> uniform_dist(
std::numeric_limits<uint32_t>::min(),
std::numeric_limits<uint32_t>::max());
for (unsigned int i = 0; i < n; i++)
((uint32_t*)data)[i] = uniform_dist(rnd_engine);
}
break;
case 2:
if (type.is_signed) {
std::uniform_int_distribution<int16_t> uniform_dist(-6, 6);
for (unsigned int i = 0; i < n; i++)
((int16_t*)data)[i] = uniform_dist(rnd_engine);
} else {
std::uniform_int_distribution<uint16_t> uniform_dist(
std::numeric_limits<uint16_t>::min(),
std::numeric_limits<uint16_t>::max());
for (unsigned int i = 0; i < n; i++)
((uint16_t*)data)[i] = uniform_dist(rnd_engine);
}
break;
case 1:
if (type.is_signed) {
std::uniform_int_distribution<int16_t> uniform_dist(
std::numeric_limits<int8_t>::min(),
std::numeric_limits<int8_t>::max());
for (unsigned int i = 0; i < n; i++)
((int8_t*)data)[i] = uniform_dist(rnd_engine);
} else {
std::uniform_int_distribution<uint16_t> uniform_dist(
std::numeric_limits<uint8_t>::min(),
std::numeric_limits<uint8_t>::max());
for (unsigned int i = 0; i < n; i++)
((uint8_t*)data)[i] = uniform_dist(rnd_engine);
}
break;
default:
throw "load_random_data: no support for data size > 8 or < 1"; // no
// shenanigans
// here
}
}
}
static std::vector<std::string> get_arch_list(volk_func_desc_t desc)
{
std::vector<std::string> archlist;
for (size_t i = 0; i < desc.n_impls; i++) {
archlist.push_back(std::string(desc.impl_names[i]));
}
return archlist;
}
template <typename T>
T volk_lexical_cast(const std::string& str)
{
for (unsigned int c_index = 0; c_index < str.size(); ++c_index) {
if (str.at(c_index) < '0' || str.at(c_index) > '9') {
throw "not all numbers!";
}
}
T var;
std::istringstream iss;
iss.str(str);
iss >> var;
// deal with any error bits that may have been set on the stream
return var;
}
volk_type_t volk_type_from_string(std::string name)
{
volk_type_t type;
type.is_float = false;
type.is_scalar = false;
type.is_complex = false;
type.is_signed = false;
type.size = 0;
type.str = name;
if (name.size() < 2) {
throw std::string("name too short to be a datatype");
}
// is it a scalar?
if (name[0] == 's') {
type.is_scalar = true;
name = name.substr(1, name.size() - 1);
}
// get the data size
size_t last_size_pos = name.find_last_of("0123456789");
if (last_size_pos == std::string::npos) {
throw std::string("no size spec in type ").append(name);
}
// will throw if malformed
int size = volk_lexical_cast<int>(name.substr(0, last_size_pos + 1));
assert(((size % 8) == 0) && (size <= 64) && (size != 0));
type.size = size / 8; // in bytes
for (size_t i = last_size_pos + 1; i < name.size(); i++) {
switch (name[i]) {
case 'f':
type.is_float = true;
break;
case 'i':
type.is_signed = true;
break;
case 'c':
type.is_complex = true;
break;
case 'u':
type.is_signed = false;
break;
default:
throw std::string("Error: no such type: '") + name[i] + "'";
}
}
return type;
}
std::vector<std::string> split_signature(const std::string& protokernel_signature)
{
std::vector<std::string> signature_tokens;
std::string token;
for (unsigned int loc = 0; loc < protokernel_signature.size(); ++loc) {
if (protokernel_signature.at(loc) == '_') {
// this is a break
signature_tokens.push_back(token);
token = "";
} else {
token.push_back(protokernel_signature.at(loc));
}
}
// Get the last one to the end of the string
signature_tokens.push_back(token);
return signature_tokens;
}
static void get_signatures_from_name(std::vector<volk_type_t>& inputsig,
std::vector<volk_type_t>& outputsig,
std::string name)
{
std::vector<std::string> toked = split_signature(name);
assert(toked[0] == "volk");
toked.erase(toked.begin());
// ok. we're assuming a string in the form
//(sig)_(multiplier-opt)_..._(name)_(sig)_(multiplier-opt)_..._(alignment)
enum { SIDE_INPUT, SIDE_NAME, SIDE_OUTPUT } side = SIDE_INPUT;
std::string fn_name;
volk_type_t type;
for (unsigned int token_index = 0; token_index < toked.size(); ++token_index) {
std::string token = toked[token_index];
try {
type = volk_type_from_string(token);
if (side == SIDE_NAME)
side = SIDE_OUTPUT; // if this is the first one after the name...
if (side == SIDE_INPUT)
inputsig.push_back(type);
else
outputsig.push_back(type);
} catch (...) {
if (token[0] == 'x' && (token.size() > 1) &&
(token[1] > '0' && token[1] < '9')) { // it's a multiplier
if (side == SIDE_INPUT)
assert(inputsig.size() > 0);
else
assert(outputsig.size() > 0);
int multiplier = volk_lexical_cast<int>(
token.substr(1, token.size() - 1)); // will throw if invalid
for (int i = 1; i < multiplier; i++) {
if (side == SIDE_INPUT)
inputsig.push_back(inputsig.back());
else
outputsig.push_back(outputsig.back());
}
} else if (side ==
SIDE_INPUT) { // it's the function name, at least it better be
side = SIDE_NAME;
fn_name.append("_");
fn_name.append(token);
} else if (side == SIDE_OUTPUT) {
if (token != toked.back())
throw; // the last token in the name is the alignment
}
}
}
// we don't need an output signature (some fn's operate on the input data, "in
// place"), but we do need at least one input!
assert(inputsig.size() != 0);
}
inline void run_cast_test1(volk_fn_1arg func,
std::vector<void*>& buffs,
unsigned int vlen,
unsigned int iter,
std::string arch)
{
while (iter--)
func(buffs[0], vlen, arch.c_str());
}
inline void run_cast_test2(volk_fn_2arg func,
std::vector<void*>& buffs,
unsigned int vlen,
unsigned int iter,
std::string arch)
{
while (iter--)
func(buffs[0], buffs[1], vlen, arch.c_str());
}
inline void run_cast_test3(volk_fn_3arg func,
std::vector<void*>& buffs,
unsigned int vlen,
unsigned int iter,
std::string arch)
{
while (iter--)
func(buffs[0], buffs[1], buffs[2], vlen, arch.c_str());
}
inline void run_cast_test4(volk_fn_4arg func,
std::vector<void*>& buffs,
unsigned int vlen,
unsigned int iter,
std::string arch)
{
while (iter--)
func(buffs[0], buffs[1], buffs[2], buffs[3], vlen, arch.c_str());
}
inline void run_cast_test1_s32f(volk_fn_1arg_s32f func,
std::vector<void*>& buffs,
float scalar,
unsigned int vlen,
unsigned int iter,
std::string arch)
{
while (iter--)
func(buffs[0], scalar, vlen, arch.c_str());
}
inline void run_cast_test2_s32f(volk_fn_2arg_s32f func,
std::vector<void*>& buffs,
float scalar,
unsigned int vlen,
unsigned int iter,
std::string arch)
{
while (iter--)
func(buffs[0], buffs[1], scalar, vlen, arch.c_str());
}
inline void run_cast_test3_s32f(volk_fn_3arg_s32f func,
std::vector<void*>& buffs,
float scalar,
unsigned int vlen,
unsigned int iter,
std::string arch)
{
while (iter--)
func(buffs[0], buffs[1], buffs[2], scalar, vlen, arch.c_str());
}
inline void run_cast_test1_s32fc(volk_fn_1arg_s32fc func,
std::vector<void*>& buffs,
lv_32fc_t scalar,
unsigned int vlen,
unsigned int iter,
std::string arch)
{
while (iter--)
func(buffs[0], &scalar, vlen, arch.c_str());
}
inline void run_cast_test2_s32fc(volk_fn_2arg_s32fc func,
std::vector<void*>& buffs,
lv_32fc_t scalar,
unsigned int vlen,
unsigned int iter,
std::string arch)
{
while (iter--)
func(buffs[0], buffs[1], &scalar, vlen, arch.c_str());
}
inline void run_cast_test3_s32fc(volk_fn_3arg_s32fc func,
std::vector<void*>& buffs,
lv_32fc_t scalar,
unsigned int vlen,
unsigned int iter,
std::string arch)
{
while (iter--)
func(buffs[0], buffs[1], buffs[2], &scalar, vlen, arch.c_str());
}
template <class t>
bool fcompare(t* in1, t* in2, unsigned int vlen, float tol, bool absolute_mode)
{
bool fail = false;
int print_max_errs = 10;
for (unsigned int i = 0; i < vlen; i++) {
if (absolute_mode) {
if (fabs(((t*)(in1))[i] - ((t*)(in2))[i]) > tol) {
fail = true;
if (print_max_errs-- > 0) {
std::cout << "offset " << i << " in1: " << t(((t*)(in1))[i])
<< " in2: " << t(((t*)(in2))[i]);
std::cout << " tolerance was: " << tol << std::endl;
}
}
} else {
// for very small numbers we'll see round off errors due to limited
// precision. So a special test case...
if (fabs(((t*)(in1))[i]) < 1e-30) {
if (fabs(((t*)(in2))[i]) > tol) {
fail = true;
if (print_max_errs-- > 0) {
std::cout << "offset " << i << " in1: " << t(((t*)(in1))[i])
<< " in2: " << t(((t*)(in2))[i]);
std::cout << " tolerance was: " << tol << std::endl;
}
}
}
// the primary test is the percent different greater than given tol
else if (fabs(((t*)(in1))[i] - ((t*)(in2))[i]) / fabs(((t*)in1)[i]) > tol) {
fail = true;
if (print_max_errs-- > 0) {
std::cout << "offset " << i << " in1: " << t(((t*)(in1))[i])
<< " in2: " << t(((t*)(in2))[i]);
std::cout << " tolerance was: " << tol << std::endl;
}
}
}
}
return fail;
}
template <class t>
bool ccompare(t* in1, t* in2, unsigned int vlen, float tol, bool absolute_mode)
{
bool fail = false;
int print_max_errs = 10;
for (unsigned int i = 0; i < 2 * vlen; i += 2) {
if (std::isnan(in1[i]) || std::isnan(in1[i + 1]) || std::isnan(in2[i]) ||
std::isnan(in2[i + 1]) || std::isinf(in1[i]) || std::isinf(in1[i + 1]) ||
std::isinf(in2[i]) || std::isinf(in2[i + 1])) {
fail = true;
if (print_max_errs-- > 0) {
std::cout << "offset " << i / 2 << " in1: " << in1[i] << " + "
<< in1[i + 1] << "j in2: " << in2[i] << " + " << in2[i + 1]
<< "j";
std::cout << " tolerance was: " << tol << std::endl;
}
}
t diff[2] = { in1[i] - in2[i], in1[i + 1] - in2[i + 1] };
t err = std::sqrt(diff[0] * diff[0] + diff[1] * diff[1]);
t norm = std::sqrt(in1[i] * in1[i] + in1[i + 1] * in1[i + 1]);
if (absolute_mode) {
if (err > tol) {
fail = true;
if (print_max_errs-- > 0) {
std::cout << "offset " << i / 2 << " in1: " << in1[i] << " + "
<< in1[i + 1] << "j in2: " << in2[i] << " + " << in2[i + 1]
<< "j";
std::cout << " tolerance was: " << tol << std::endl;
}
}
} else {
// for very small numbers we'll see round off errors due to limited
// precision. So a special test case...
if (norm < 1e-30) {
if (err > tol) {
fail = true;
if (print_max_errs-- > 0) {
std::cout << "offset " << i / 2 << " in1: " << in1[i] << " + "
<< in1[i + 1] << "j in2: " << in2[i] << " + "
<< in2[i + 1] << "j";
std::cout << " tolerance was: " << tol << std::endl;
}
}
}
// the primary test is the percent different greater than given tol
else if ((err / norm) > tol) {
fail = true;
if (print_max_errs-- > 0) {
std::cout << "offset " << i / 2 << " in1: " << in1[i] << " + "
<< in1[i + 1] << "j in2: " << in2[i] << " + " << in2[i + 1]
<< "j";
std::cout << " tolerance was: " << tol << std::endl;
}
}
}
}
return fail;
}
template <class t>
bool icompare(t* in1, t* in2, unsigned int vlen, unsigned int tol)
{
bool fail = false;
int print_max_errs = 10;
for (unsigned int i = 0; i < vlen; i++) {
if (((uint64_t)abs(int64_t(((t*)(in1))[i]) - int64_t(((t*)(in2))[i]))) > tol) {
fail = true;
if (print_max_errs-- > 0) {
std::cout << "offset " << i
<< " in1: " << static_cast<int64_t>(t(((t*)(in1))[i]))
<< " in2: " << static_cast<int64_t>(t(((t*)(in2))[i]));
std::cout << " tolerance was: " << tol << std::endl;
}
}
}
return fail;
}
class volk_qa_aligned_mem_pool
{
public:
void* get_new(size_t size)
{
size_t alignment = volk_get_alignment();
void* ptr = volk_malloc(size, alignment);
memset(ptr, 0x00, size);
_mems.push_back(ptr);
return ptr;
}
~volk_qa_aligned_mem_pool()
{
for (unsigned int ii = 0; ii < _mems.size(); ++ii) {
volk_free(_mems[ii]);
}
}
private:
std::vector<void*> _mems;
};
bool run_volk_tests(volk_func_desc_t desc,
void (*manual_func)(),
std::string name,
volk_test_params_t test_params,
std::vector<volk_test_results_t>* results,
std::string puppet_master_name)
{
return run_volk_tests(desc,
manual_func,
name,
test_params.tol(),
test_params.scalar(),
test_params.vlen(),
test_params.iter(),
results,
puppet_master_name,
test_params.absolute_mode(),
test_params.benchmark_mode());
}
bool run_volk_tests(volk_func_desc_t desc,
void (*manual_func)(),
std::string name,
float tol,
lv_32fc_t scalar,
unsigned int vlen,
unsigned int iter,
std::vector<volk_test_results_t>* results,
std::string puppet_master_name,
bool absolute_mode,
bool benchmark_mode)
{
// Initialize this entry in results vector
results->push_back(volk_test_results_t());
results->back().name = name;
results->back().vlen = vlen;
results->back().iter = iter;
std::cout << "RUN_VOLK_TESTS: " << name << "(" << vlen << "," << iter << ")"
<< std::endl;
// vlen_twiddle will increase vlen for malloc and data generation
// but kernels will still be called with the user provided vlen.
// This is useful for causing errors in kernels that do bad reads
const unsigned int vlen_twiddle = 5;
vlen = vlen + vlen_twiddle;
const float tol_f = tol;
const unsigned int tol_i = static_cast<unsigned int>(tol);
// first let's get a list of available architectures for the test
std::vector<std::string> arch_list = get_arch_list(desc);
if ((!benchmark_mode) && (arch_list.size() < 2)) {
std::cout << "no architectures to test" << std::endl;
return false;
}
// something that can hang onto memory and cleanup when this function exits
volk_qa_aligned_mem_pool mem_pool;
// now we have to get a function signature by parsing the name
std::vector<volk_type_t> inputsig, outputsig;
try {
get_signatures_from_name(inputsig, outputsig, name);
} catch (std::exception& error) {
std::cerr << "Error: unable to get function signature from kernel name"
<< std::endl;
std::cerr << " - " << name << std::endl;
return false;
}
// pull the input scalars into their own vector
std::vector<volk_type_t> inputsc;
for (size_t i = 0; i < inputsig.size(); i++) {
if (inputsig[i].is_scalar) {
inputsc.push_back(inputsig[i]);
inputsig.erase(inputsig.begin() + i);
i -= 1;
}
}
std::vector<void*> inbuffs;
for (unsigned int inputsig_index = 0; inputsig_index < inputsig.size();
++inputsig_index) {
volk_type_t sig = inputsig[inputsig_index];
if (!sig.is_scalar) // we don't make buffers for scalars
inbuffs.push_back(
mem_pool.get_new(vlen * sig.size * (sig.is_complex ? 2 : 1)));
}
for (size_t i = 0; i < inbuffs.size(); i++) {
load_random_data(inbuffs[i], inputsig[i], vlen);
}
// ok let's make a vector of vector of void buffers, which holds the input/output
// vectors for each arch
std::vector<std::vector<void*>> test_data;
for (size_t i = 0; i < arch_list.size(); i++) {
std::vector<void*> arch_buffs;
for (size_t j = 0; j < outputsig.size(); j++) {
arch_buffs.push_back(mem_pool.get_new(vlen * outputsig[j].size *
(outputsig[j].is_complex ? 2 : 1)));
}
for (size_t j = 0; j < inputsig.size(); j++) {
void* arch_inbuff = mem_pool.get_new(vlen * inputsig[j].size *
(inputsig[j].is_complex ? 2 : 1));
memcpy(arch_inbuff,
inbuffs[j],
vlen * inputsig[j].size * (inputsig[j].is_complex ? 2 : 1));
arch_buffs.push_back(arch_inbuff);
}
test_data.push_back(arch_buffs);
}
std::vector<volk_type_t> both_sigs;
both_sigs.insert(both_sigs.end(), outputsig.begin(), outputsig.end());
both_sigs.insert(both_sigs.end(), inputsig.begin(), inputsig.end());
// now run the test
vlen = vlen - vlen_twiddle;
std::chrono::time_point<std::chrono::system_clock> start, end;
std::vector<double> profile_times;
for (size_t i = 0; i < arch_list.size(); i++) {
start = std::chrono::system_clock::now();
switch (both_sigs.size()) {
case 1:
if (inputsc.size() == 0) {
run_cast_test1(
(volk_fn_1arg)(manual_func), test_data[i], vlen, iter, arch_list[i]);
} else if (inputsc.size() == 1 && inputsc[0].is_float) {
if (inputsc[0].is_complex) {
run_cast_test1_s32fc((volk_fn_1arg_s32fc)(manual_func),
test_data[i],
scalar,
vlen,
iter,
arch_list[i]);
} else {
run_cast_test1_s32f((volk_fn_1arg_s32f)(manual_func),
test_data[i],
scalar.real(),
vlen,
iter,
arch_list[i]);
}
} else
throw "unsupported 1 arg function >1 scalars";
break;
case 2:
if (inputsc.size() == 0) {
run_cast_test2(
(volk_fn_2arg)(manual_func), test_data[i], vlen, iter, arch_list[i]);
} else if (inputsc.size() == 1 && inputsc[0].is_float) {
if (inputsc[0].is_complex) {
run_cast_test2_s32fc((volk_fn_2arg_s32fc)(manual_func),
test_data[i],
scalar,
vlen,
iter,
arch_list[i]);
} else {
run_cast_test2_s32f((volk_fn_2arg_s32f)(manual_func),
test_data[i],
scalar.real(),
vlen,
iter,
arch_list[i]);
}
} else
throw "unsupported 2 arg function >1 scalars";
break;
case 3:
if (inputsc.size() == 0) {
run_cast_test3(
(volk_fn_3arg)(manual_func), test_data[i], vlen, iter, arch_list[i]);
} else if (inputsc.size() == 1 && inputsc[0].is_float) {
if (inputsc[0].is_complex) {
run_cast_test3_s32fc((volk_fn_3arg_s32fc)(manual_func),
test_data[i],
scalar,
vlen,
iter,
arch_list[i]);
} else {
run_cast_test3_s32f((volk_fn_3arg_s32f)(manual_func),
test_data[i],
scalar.real(),
vlen,
iter,
arch_list[i]);
}
} else
throw "unsupported 3 arg function >1 scalars";
break;
case 4:
run_cast_test4(
(volk_fn_4arg)(manual_func), test_data[i], vlen, iter, arch_list[i]);
break;
default:
throw "no function handler for this signature";
break;
}
end = std::chrono::system_clock::now();
std::chrono::duration<double> elapsed_seconds = end - start;
double arch_time = 1000.0 * elapsed_seconds.count();
std::cout << arch_list[i] << " completed in " << arch_time << " ms" << std::endl;
volk_test_time_t result;
result.name = arch_list[i];
result.time = arch_time;
result.units = "ms";
result.pass = true;
results->back().results[result.name] = result;
profile_times.push_back(arch_time);
}
// and now compare each output to the generic output
// first we have to know which output is the generic one, they aren't in order...
size_t generic_offset = 0;
for (size_t i = 0; i < arch_list.size(); i++) {
if (arch_list[i] == "generic") {
generic_offset = i;
}
}
// Just in case a kernel wrote to OOB memory, use the twiddled vlen
vlen = vlen + vlen_twiddle;
bool fail;
bool fail_global = false;
std::vector<bool> arch_results;
for (size_t i = 0; i < arch_list.size(); i++) {
fail = false;
if (i != generic_offset) {
for (size_t j = 0; j < both_sigs.size(); j++) {
if (both_sigs[j].is_float) {
if (both_sigs[j].size == 8) {
if (both_sigs[j].is_complex) {
fail = ccompare((double*)test_data[generic_offset][j],
(double*)test_data[i][j],
vlen,
tol_f,
absolute_mode);
} else {
fail = fcompare((double*)test_data[generic_offset][j],
(double*)test_data[i][j],
vlen,
tol_f,
absolute_mode);
}
} else {
if (both_sigs[j].is_complex) {
fail = ccompare((float*)test_data[generic_offset][j],
(float*)test_data[i][j],
vlen,
tol_f,
absolute_mode);
} else {
fail = fcompare((float*)test_data[generic_offset][j],
(float*)test_data[i][j],
vlen,
tol_f,
absolute_mode);
}
}
} else {
// i could replace this whole switch statement with a memcmp if i
// wasn't interested in printing the outputs where they differ
switch (both_sigs[j].size) {
case 8:
if (both_sigs[j].is_signed) {
fail = icompare((int64_t*)test_data[generic_offset][j],
(int64_t*)test_data[i][j],
vlen * (both_sigs[j].is_complex ? 2 : 1),
tol_i);
} else {
fail = icompare((uint64_t*)test_data[generic_offset][j],
(uint64_t*)test_data[i][j],
vlen * (both_sigs[j].is_complex ? 2 : 1),
tol_i);
}
break;
case 4:
if (both_sigs[j].is_complex) {
if (both_sigs[j].is_signed) {
fail = icompare((int16_t*)test_data[generic_offset][j],
(int16_t*)test_data[i][j],
vlen * (both_sigs[j].is_complex ? 2 : 1),
tol_i);
} else {
fail = icompare((uint16_t*)test_data[generic_offset][j],
(uint16_t*)test_data[i][j],
vlen * (both_sigs[j].is_complex ? 2 : 1),
tol_i);
}
} else {
if (both_sigs[j].is_signed) {
fail = icompare((int32_t*)test_data[generic_offset][j],
(int32_t*)test_data[i][j],
vlen * (both_sigs[j].is_complex ? 2 : 1),
tol_i);
} else {
fail = icompare((uint32_t*)test_data[generic_offset][j],
(uint32_t*)test_data[i][j],
vlen * (both_sigs[j].is_complex ? 2 : 1),
tol_i);
}
}
break;
case 2:
if (both_sigs[j].is_signed) {
fail = icompare((int16_t*)test_data[generic_offset][j],
(int16_t*)test_data[i][j],
vlen * (both_sigs[j].is_complex ? 2 : 1),
tol_i);
} else {
fail = icompare((uint16_t*)test_data[generic_offset][j],
(uint16_t*)test_data[i][j],
vlen * (both_sigs[j].is_complex ? 2 : 1),
tol_i);
}
break;
case 1:
if (both_sigs[j].is_signed) {
fail = icompare((int8_t*)test_data[generic_offset][j],
(int8_t*)test_data[i][j],
vlen * (both_sigs[j].is_complex ? 2 : 1),
tol_i);
} else {
fail = icompare((uint8_t*)test_data[generic_offset][j],
(uint8_t*)test_data[i][j],
vlen * (both_sigs[j].is_complex ? 2 : 1),
tol_i);
}
break;
default:
fail = 1;
}
}
if (fail) {
volk_test_time_t* result = &results->back().results[arch_list[i]];
result->pass = false;
fail_global = true;
std::cout << name << ": fail on arch " << arch_list[i] << std::endl;
}
}
}
arch_results.push_back(!fail);
}
double best_time_a = std::numeric_limits<double>::max();
double best_time_u = std::numeric_limits<double>::max();
std::string best_arch_a = "generic";
std::string best_arch_u = "generic";
for (size_t i = 0; i < arch_list.size(); i++) {
if ((profile_times[i] < best_time_u) && arch_results[i] &&
desc.impl_alignment[i] == 0) {
best_time_u = profile_times[i];
best_arch_u = arch_list[i];
}
if ((profile_times[i] < best_time_a) && arch_results[i]) {
best_time_a = profile_times[i];
best_arch_a = arch_list[i];
}
}
std::cout << "Best aligned arch: " << best_arch_a << std::endl;
std::cout << "Best unaligned arch: " << best_arch_u << std::endl;
if (puppet_master_name == "NULL") {
results->back().config_name = name;
} else {
results->back().config_name = puppet_master_name;
}
results->back().best_arch_a = best_arch_a;
results->back().best_arch_u = best_arch_u;
return fail_global;
}
|