1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
|
#!/usr/bin/env python
# Copyright 2019 Free Software Foundation, Inc.
#
# This file is part of VOLK
#
# SPDX-License-Identifier: LGPL-3.0-or-later
#
# This script is used to compare the generic kernels to the highest performing kernel, for each operation
# Run:
# ./volk_profile -j volk_results.json
# Then run this script under python3
import matplotlib.pyplot as plt
import numpy as np
import json
filename = 'volk_results.json'
operations = []
metrics = []
with open(filename) as json_file:
data = json.load(json_file)
for test in data['volk_tests']:
if ('generic' in test['results']) or ('u_generic' in test['results']): # some dont have a generic kernel
operations.append(test['name'][5:]) # remove volk_ prefix that they all have
extension_performance = []
for key, val in test['results'].items():
if key not in ['generic', 'u_generic']: # exclude generic results, when trying to find fastest time
extension_performance.append(val['time'])
try:
generic_time = test['results']['generic']['time']
except:
generic_time = test['results']['u_generic']['time']
metrics.append(extension_performance[np.argmin(extension_performance)]/generic_time)
plt.bar(np.arange(len(metrics)), metrics)
plt.hlines(1.0, -1, len(metrics), colors='r', linestyles='dashed')
plt.axis([-1, len(metrics), 0, 2])
plt.xticks(np.arange(len(operations)), operations, rotation=90)
plt.ylabel('Time taken of fastest kernel relative to generic kernel')
plt.tight_layout()
plt.show()
|