1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
|
/* -*- c++ -*- */
/*
* Copyright 2022 Johannes Demel
*
* This file is part of VOLK
*
* SPDX-License-Identifier: LGPL-3.0-or-later
*/
#include <fmt/core.h>
#include <fmt/ranges.h>
#include <gtest/gtest.h>
#include <volk/volk.h>
#include <array>
#include <tuple>
static constexpr std::array<size_t, 5> default_vector_sizes{ 7, 32, 128, 1023, 131071 };
std::vector<std::string> get_kernel_implementation_name_list(const volk_func_desc_t desc);
bool is_aligned_implementation_name(const std::string& name);
std::tuple<std::vector<std::string>, std::vector<std::string>>
separate_implementations_by_alignment(const std::vector<std::string>& names);
std::vector<std::string>
get_aligned_kernel_implementation_names(const volk_func_desc_t desc);
std::vector<std::string>
get_unaligned_kernel_implementation_names(const volk_func_desc_t desc);
struct generate_volk_test_name {
template <class ParamType>
std::string operator()(const ::testing::TestParamInfo<ParamType>& info) const
{
return fmt::format("{}_{}", std::get<0>(info.param), std::get<1>(info.param));
}
};
class VolkTest : public ::testing::TestWithParam<std::tuple<std::string, size_t>>
{
protected:
void initialize_test(const std::tuple<std::string, size_t>& param)
{
std::tie(implementation_name, vector_length) = param;
is_aligned_implementation = is_aligned_implementation_name(implementation_name);
}
std::string implementation_name;
bool is_aligned_implementation;
size_t vector_length;
};
template <class T>
::testing::AssertionResult AreComplexFloatingPointArraysAlmostEqual(const T& expected,
const T& actual)
{
::testing::AssertionResult result = ::testing::AssertionFailure();
if (expected.size() != actual.size()) {
return result << "expected result size=" << expected.size()
<< " differs from actual size=" << actual.size();
}
const unsigned long length = expected.size();
int errorsFound = 0;
const char* separator = " ";
for (unsigned long index = 0; index < length; index++) {
auto expected_real = ::testing::internal::FloatingPoint(expected[index].real());
auto expected_imag = ::testing::internal::FloatingPoint(expected[index].imag());
auto actual_real = ::testing::internal::FloatingPoint(actual[index].real());
auto actual_imag = ::testing::internal::FloatingPoint(actual[index].imag());
if (not expected_real.AlmostEquals(actual_real) or
not expected_imag.AlmostEquals(actual_imag)) {
if (errorsFound == 0) {
result << "Differences found:";
}
if (errorsFound < 3) {
result << separator << expected[index] << " != " << actual[index] << " @ "
<< index;
separator = ",\n";
}
errorsFound++;
}
}
if (errorsFound > 0) {
result << separator << errorsFound << " differences in total";
return result;
}
return ::testing::AssertionSuccess();
}
template <class T>
::testing::AssertionResult AreComplexFloatingPointArraysEqualWithAbsoluteError(
const T& expected, const T& actual, const float absolute_error = 1.0e-7)
{
::testing::AssertionResult result = ::testing::AssertionFailure();
if (expected.size() != actual.size()) {
return result << "expected result size=" << expected.size()
<< " differs from actual size=" << actual.size();
}
const unsigned long length = expected.size();
int errorsFound = 0;
const char* separator = " ";
for (unsigned long index = 0; index < length; index++) {
auto expected_real = ::testing::internal::FloatingPoint(expected[index].real());
auto expected_imag = ::testing::internal::FloatingPoint(expected[index].imag());
auto actual_real = ::testing::internal::FloatingPoint(actual[index].real());
auto actual_imag = ::testing::internal::FloatingPoint(actual[index].imag());
if (expected_real.is_nan() or actual_real.is_nan() or expected_imag.is_nan() or
actual_imag.is_nan() or
std::abs(expected[index].real() - actual[index].real()) > absolute_error or
std::abs(expected[index].imag() - actual[index].imag()) > absolute_error) {
if (errorsFound == 0) {
result << "Differences found:";
}
if (errorsFound < 3) {
result << separator << expected[index] << " != " << actual[index] << " @ "
<< index;
separator = ",\n";
}
errorsFound++;
}
}
if (errorsFound > 0) {
result << separator << errorsFound << " differences in total";
return result;
}
return ::testing::AssertionSuccess();
}
template <class T>
::testing::AssertionResult AreFloatingPointArraysEqualWithAbsoluteError(
const T& expected, const T& actual, const float absolute_error = 1.0e-7)
{
::testing::AssertionResult result = ::testing::AssertionFailure();
if (expected.size() != actual.size()) {
return result << "expected result size=" << expected.size()
<< " differs from actual size=" << actual.size();
}
const unsigned long length = expected.size();
int errorsFound = 0;
const char* separator = " ";
for (unsigned long index = 0; index < length; index++) {
auto expected_value = ::testing::internal::FloatingPoint(expected[index]);
auto actual_value = ::testing::internal::FloatingPoint(actual[index]);
if (expected_value.is_nan() or actual_value.is_nan() or
std::abs(expected[index] - actual[index]) > absolute_error) {
if (errorsFound == 0) {
result << "Differences found:";
}
if (errorsFound < 3) {
result << separator << expected[index] << " != " << actual[index] << " @ "
<< index;
separator = ",\n";
}
errorsFound++;
}
}
if (errorsFound > 0) {
result << separator << errorsFound << " differences in total";
return result;
}
return ::testing::AssertionSuccess();
}
|