1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
|
/*
* vp_extract.c
*
* Routines to extract fields from a volume.
*
* Copyright (c) 1994 The Board of Trustees of The Leland Stanford
* Junior University. All rights reserved.
*
* Permission to use, copy, modify and distribute this software and its
* documentation for any purpose is hereby granted without fee, provided
* that the above copyright notice and this permission notice appear in
* all copies of this software and that you do not sell the software.
* Commercial licensing is available by contacting the author.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND WITHOUT WARRANTY OF ANY KIND,
* EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
* WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
*
* Author:
* Phil Lacroute
* Computer Systems Laboratory
* Electrical Engineering Dept.
* Stanford University
*/
/*
* $Date: 1994/12/30 23:52:38 $
* $Revision: 1.28 $
*/
#include "vp_global.h"
static int ExtractRawVolume ANSI_ARGS((vpContext *vpc, int x0, int y0, int z0,
int x1, int y1, int z1, int field, void *dst, int dst_xstride,
int dst_ystride, int dst_zstride));
static int ClassifyRawVolume ANSI_ARGS((vpContext *vpc, int correct,
int x0, int y0, int z0, int x1, int y1, int z1, unsigned char *dst,
int dst_xstride, int dst_ystride, int dst_zstride));
static int ShadeRawVolume ANSI_ARGS((vpContext *vpc, int x0, int y0, int z0,
int x1, int y1, int z1, unsigned char *dst, int dst_xstride,
int dst_ystride, int dst_zstride));
static float CorrectOpacity ANSI_ARGS((vpContext *vpc, int quant_opc,
int x, int y, int z));
static void ShadeVoxel ANSI_ARGS((vpContext *vpc, void *voxel, int x,
int y, int z, float *dst));
static int ExtractClassifiedVolume ANSI_ARGS((vpContext *vpc, int axis,
int x0, int y0, int z0, int x1, int y1, int z1, int field, void *dst,
int dst_xstride, int dst_ystride, int dst_zstride));
/*
* vpExtract
*
* Extract a field from a volume.
*/
vpResult
vpExtract(vpc, volume_type, x0, y0, z0, x1, y1, z1, field, dst, dst_size,
dst_xstride, dst_ystride, dst_zstride)
vpContext *vpc; /* context */
int volume_type; /* which volume representation to extract from */
int x0, y0, z0; /* origin of extracted region */
int x1, y1, z1; /* opposite corner of extracted region */
int field; /* field to extract */
void *dst; /* buffer to store result into */
int dst_size; /* size of dst in bytes */
int dst_xstride; /* stride (in bytes) for destination array */
int dst_ystride;
int dst_zstride;
{
int field_size;
int xrange, yrange, zrange;
int retcode;
int axis;
/* check for errors */
if (x0 < 0 || y0 < 0 || z0 < 0 || x1 >= vpc->xlen || y1 >= vpc->ylen ||
z1 >= vpc->zlen || x0 > x1 || y0 > y1 || z0 > z1)
return(VPSetError(vpc, VPERROR_BAD_VALUE));
if (field == VP_OPACITY_FIELD || field == VP_CORRECTED_OPAC_FIELD)
field_size = 1;
else if (field == VP_COLOR_FIELD)
field_size = vpc->color_channels;
else if (field < 0 || field >= vpc->num_voxel_fields)
return(VPSetError(vpc, VPERROR_BAD_VALUE));
else if (volume_type != VP_RAW_VOLUME && field >= vpc->num_shade_fields)
return(VPSetError(vpc, VPERROR_BAD_VALUE));
else
field_size = vpc->field_size[field];
if (dst == NULL || dst_size != field_size*(x1-x0+1)*(y1-y0+1)*(z1-z0+1))
return(VPSetError(vpc, VPERROR_BAD_SIZE));
/* choose axis */
switch (volume_type) {
case VP_CLASSIFIED_VOLUME:
xrange = x1 - x0;
yrange = y1 - y0;
zrange = z1 - z0;
if (vpc->rle_z != NULL && zrange < xrange && zrange < yrange)
axis = VP_Z_AXIS;
else if (vpc->rle_x != NULL && xrange < yrange && xrange < zrange)
axis = VP_X_AXIS;
else if (vpc->rle_z != NULL && yrange < zrange && yrange < xrange)
axis = VP_Y_AXIS;
else if (vpc->rle_z != NULL && xrange >= yrange && xrange >= zrange)
axis = VP_Z_AXIS;
else if (vpc->rle_x != NULL && yrange >= zrange)
axis = VP_X_AXIS;
else if (vpc->rle_y != NULL)
axis = VP_Y_AXIS;
else if (vpc->rle_z != NULL)
axis = VP_Z_AXIS;
else if (vpc->rle_x != NULL)
axis = VP_X_AXIS;
else
return(VPSetError(vpc, VPERROR_BAD_VOLUME));
break;
case VP_CLX_VOLUME:
axis = VP_X_AXIS;
break;
case VP_CLY_VOLUME:
axis = VP_Y_AXIS;
break;
case VP_CLZ_VOLUME:
axis = VP_Z_AXIS;
break;
case VP_RAW_VOLUME:
break;
default:
return(VPSetError(vpc, VPERROR_BAD_OPTION));
}
/* compute result */
if (volume_type == VP_RAW_VOLUME) {
if ((retcode = VPCheckRawVolume(vpc)) != VP_OK)
return(retcode);
if (field == VP_OPACITY_FIELD)
return(ClassifyRawVolume(vpc, 0, x0, y0, z0, x1, y1, z1, dst,
dst_xstride, dst_ystride, dst_zstride));
else if (field == VP_CORRECTED_OPAC_FIELD)
return(ClassifyRawVolume(vpc, 1, x0, y0, z0, x1, y1, z1, dst,
dst_xstride, dst_ystride, dst_zstride));
else if (field == VP_COLOR_FIELD)
return(ShadeRawVolume(vpc, x0, y0, z0, x1, y1, z1, dst,
dst_xstride, dst_ystride, dst_zstride));
else
return(ExtractRawVolume(vpc, x0, y0, z0, x1, y1, z1, field, dst,
dst_xstride, dst_ystride, dst_zstride));
} else {
if ((retcode = VPCheckClassifiedVolume(vpc, axis)) != VP_OK)
return(retcode);
if (field == VP_COLOR_FIELD) {
return(VPSetError(vpc, VPERROR_BAD_VALUE));
} else {
return(ExtractClassifiedVolume(vpc, axis, x0, y0, z0, x1, y1, z1,
field, dst, dst_xstride, dst_ystride, dst_zstride));
}
}
}
/*
* ExtractRawVolume
*
* Extract a field from a raw volume into an array.
*/
static int
ExtractRawVolume(vpc, x0, y0, z0, x1, y1, z1, field, dst,
dst_xstride, dst_ystride, dst_zstride)
vpContext *vpc; /* context */
int x0, y0, z0; /* origin of extracted region */
int x1, y1, z1; /* opposite corner of extracted region */
int field; /* field to extract */
void *dst; /* buffer to store result into */
int dst_xstride; /* stride (in bytes) for destination array */
int dst_ystride;
int dst_zstride;
{
int x, y, z;
unsigned char *voxel, *dstptr;
int field_size;
int field_offset;
int xstride, ystride, zstride;
int retcode;
field_size = vpc->field_size[field];
field_offset = vpc->field_offset[field];
xstride = vpc->xstride;
ystride = vpc->ystride;
zstride = vpc->zstride;
voxel = vpc->raw_voxels;
voxel += x0*xstride + y0*ystride + z0*zstride;
dstptr = dst;
for (z = z0; z <= z1; z++) {
for (y = y0; y <= y1; y++) {
for (x = x0; x <= x1; x++) {
if (field_size == 1)
ByteField(dstptr, 0) = ByteField(voxel, field_offset);
else if (field_size == 2)
ShortField(dstptr, 0) = ShortField(voxel, field_offset);
else
IntField(dstptr, 0) = IntField(voxel, field_offset);
dstptr += dst_xstride;
voxel += xstride;
}
dstptr += dst_ystride - (x1-x0+1)*dst_xstride;
voxel += ystride - (x1-x0+1)*xstride;
}
dstptr += dst_zstride - (y1-y0+1)*dst_ystride;
voxel += zstride - (y1-y0+1)*ystride;
}
return(VP_OK);
}
/*
* ClassifyRawVolume
*
* Classify a portion of a raw volume, quantize the result, and store
* as an array of 8-bit opacities.
*/
static int
ClassifyRawVolume(vpc, correct, x0, y0, z0, x1, y1, z1, dst,
dst_xstride, dst_ystride, dst_zstride)
vpContext *vpc; /* context */
int correct; /* if true then correct for view */
int x0, y0, z0; /* origin of extracted region */
int x1, y1, z1; /* opposite corner of extracted region */
unsigned char *dst; /* buffer to store result into */
int dst_xstride; /* stride (in bytes) for destination array */
int dst_ystride;
int dst_zstride;
{
float *opc;
int num_voxels;
int retcode;
/* check for errors */
if ((retcode = VPCheckClassifier(vpc)) != VP_OK)
return(retcode);
/* compute opacities */
num_voxels = (x1-x0+1)*(y1-y0+1)*(z1-z0+1);
Alloc(vpc, opc, float *, num_voxels*sizeof(float), "opacity_block");
VPClassifyBlock(vpc, correct, x0, y0, z0, x1, y1, z1, opc,
sizeof(float), (x1-x0+1)*sizeof(float),
(x1-x0+1)*(y1-y0+1)*sizeof(float));
/* quantize opacities */
VPQuantize(opc, x1-x0+1, y1-y0+1, z1-z0+1, 255., 255, dst,
dst_xstride, dst_ystride, dst_zstride);
Dealloc(vpc, opc);
return(VP_OK);
}
/*
* ShadeRawVolume
*
* Shade a portion of a raw volume, quantize the result, and store
* as an array of 8-bit intensities.
*/
static int
ShadeRawVolume(vpc, x0, y0, z0, x1, y1, z1, dst,
dst_xstride, dst_ystride, dst_zstride)
vpContext *vpc; /* context */
int x0, y0, z0; /* origin of extracted region */
int x1, y1, z1; /* opposite corner of extracted region */
unsigned char *dst; /* buffer to store result into */
int dst_xstride; /* stride (in bytes) for destination array */
int dst_ystride;
int dst_zstride;
{
float *shd;
int num_colors;
int retcode;
int xstride, ystride, zstride;
/* check for errors */
if ((retcode = VPCheckShader(vpc)) != VP_OK)
return(retcode);
/* compute colors */
num_colors = (x1-x0+1)*(y1-y0+1)*(z1-z0+1)*vpc->color_channels;
Alloc(vpc, shd, float *, num_colors*sizeof(float), "color_block");
xstride = vpc->color_channels * sizeof(float);
ystride = xstride * (x1-x0+1);
zstride = ystride * (y1-y0+1);
VPShadeBlock(vpc, x0, y0, z0, x1, y1, z1, shd, xstride, ystride, zstride);
/* quantize colors */
VPQuantize(shd, x1-x0+1, y1-y0+1, z1-z0+1, 1., 255, dst,
dst_xstride, dst_ystride, dst_zstride);
Dealloc(vpc, shd);
return(VP_OK);
}
/*
* VPClassifyBlock
*
* Classify a block of the current raw volume. The result is an
* array of floating point opacities in the range 0.0-1.0.
*/
vpResult
VPClassifyBlock(vpc, correct, x0, y0, z0, x1, y1, z1, opc,
dst_xstride, dst_ystride, dst_zstride)
vpContext *vpc; /* context */
int correct; /* if true then correct for view */
int x0, y0, z0; /* origin of extracted region */
int x1, y1, z1; /* opposite corner of extracted region */
float *opc; /* buffer to store result into */
int dst_xstride; /* stride (in bytes) for destination array */
int dst_ystride;
int dst_zstride;
{
unsigned char *voxel;
int xstride, ystride, zstride;
int x, y, z;
float opacity;
int quant_opc;
int retcode;
if (correct) {
if ((retcode = VPFactorView(vpc)) != VP_OK)
return(retcode);
}
xstride = vpc->xstride;
ystride = vpc->ystride;
zstride = vpc->zstride;
voxel = vpc->raw_voxels;
voxel += x0*xstride + y0*ystride + z0*zstride;
for (z = z0; z <= z1; z++) {
for (y = y0; y <= y1; y++) {
for (x = x0; x <= x1; x++) {
opacity = VPClassifyVoxel(vpc, voxel);
if (correct) {
quant_opc = opacity * 255.;
if (quant_opc > 255)
quant_opc = 255;
else if (quant_opc < 0)
quant_opc = 0;
opacity = CorrectOpacity(vpc, quant_opc, x, y, z);
}
*opc = opacity;
opc = (float *)((char *)opc + dst_xstride);
voxel += xstride;
}
opc = (float *)((char *)opc + dst_ystride - (x1-x0+1)*dst_xstride);
voxel += ystride - (x1-x0+1)*xstride;
}
opc = (float *)((char *)opc + dst_zstride - (y1-y0+1)*dst_ystride);
voxel += zstride - (y1-y0+1)*ystride;
}
return(VP_OK);
}
/*
* VPClassifyVoxel
*
* Classify a single voxel. Return value is an opacity.
*/
float
VPClassifyVoxel(vpc, voxel)
vpContext *vpc; /* context */
void *voxel; /* pointer to voxel */
{
int num_params; /* number of parameters to classifier */
int p; /* current parameter number */
int field; /* field for the parameter */
int field_size; /* size of the field */
int field_offset; /* offset for the field */
int index; /* index for table lookup */
float opacity; /* current value of the opacity */
num_params = vpc->num_clsfy_params;
opacity = 1;
for (p = 0; p < num_params; p++) {
/* get table index */
field = vpc->param_field[p];
field_offset = vpc->field_offset[field];
field_size = vpc->field_size[field];
index = VoxelField(voxel, field_offset, field_size);
/* load table value */
opacity *= vpc->clsfy_table[p][index];
}
return(opacity);
}
/*
* CorrectOpacity
*
* Correct an opacity for the current view.
* Return value is the corrected opacity.
*/
static float
CorrectOpacity(vpc, quant_opc, x, y, z)
vpContext *vpc; /* context */
int quant_opc; /* input opacity (0-255) */
int x, y, z; /* voxel coordinates in object space */
{
float opacity;
if (vpc->affine_view) {
opacity = vpc->affine_opac_correct[quant_opc];
} else {
/* XXX perspective rendering not available yet */
opacity = (float)quant_opc / (float)255.;
}
return(opacity);
}
/*
* VPShadeBlock
*
* Shade a block of the current raw volume. The result is an
* array of floating point colors in the range 0.0-255.0.
*/
vpResult
VPShadeBlock(vpc, x0, y0, z0, x1, y1, z1, shd,
dst_xstride, dst_ystride, dst_zstride)
vpContext *vpc; /* context */
int x0, y0, z0; /* origin of extracted region */
int x1, y1, z1; /* opposite corner of extracted region */
float *shd; /* buffer to store result into */
int dst_xstride; /* stride (in bytes) for destination array */
int dst_ystride;
int dst_zstride;
{
unsigned char *voxel;
int xstride, ystride, zstride;
int x, y, z;
int color_channels;
color_channels = vpc->color_channels;
xstride = vpc->xstride;
ystride = vpc->ystride;
zstride = vpc->zstride;
voxel = vpc->raw_voxels;
voxel += x0*xstride + y0*ystride + z0*zstride;
for (z = z0; z <= z1; z++) {
for (y = y0; y <= y1; y++) {
for (x = x0; x <= x1; x++) {
ShadeVoxel(vpc, voxel, x, y, z, shd);
shd = (float *)((char *)shd + dst_xstride);
voxel += xstride;
}
shd = (float *)((char *)shd + dst_ystride - (x1-x0+1)*dst_xstride);
voxel += ystride - (x1-x0+1)*xstride;
}
shd = (float *)((char *)shd + dst_zstride - (y1-y0+1)*dst_ystride);
voxel += zstride - (y1-y0+1)*ystride;
}
return(VP_OK);
}
/*
* ShadeVoxel
*
* Shade a voxel.
*/
static void
ShadeVoxel(vpc, voxel, x, y, z, dst)
vpContext *vpc; /* context */
void *voxel; /* voxel data */
int x, y, z; /* voxel coordinates */
float *dst; /* storage for result (1 or 3 intensities, 0-255) */
{
int num_materials;
int color_channels;
int color_index_size, color_index_offset, color_index, color_table_offset;
int weight_index_size, weight_index_offset, weight_index;
int weight_table_offset;
int m;
float r, g, b;
float *color_table;
float *weight_table;
/* check shading mode */
if (vpc->shading_mode == CALLBACK_SHADER) {
if (vpc->color_channels == 1)
vpc->shade_func(voxel, dst, vpc->client_data);
else
vpc->shade_func(voxel, dst, dst+1, dst+2, vpc->client_data);
return;
} else if (vpc->shading_mode != LOOKUP_SHADER) {
VPBug("unknown shader type");
}
/* compute table indices */
num_materials = vpc->num_materials;
color_channels = vpc->color_channels;
color_index_size = vpc->field_size[vpc->color_field];
color_index_offset = vpc->field_offset[vpc->color_field];
color_index = VoxelField(voxel, color_index_offset, color_index_size);
color_table_offset = color_index * num_materials;
weight_index_size = vpc->field_size[vpc->weight_field];
weight_index_offset = vpc->field_offset[vpc->weight_field];
weight_index = VoxelField(voxel, weight_index_offset, weight_index_size);
weight_table_offset = weight_index * num_materials;
/* look up values in tables */
if (color_channels == 1) {
color_table = vpc->shade_color_table + color_table_offset;
weight_table = vpc->shade_weight_table + weight_table_offset;
if (num_materials == 1) {
r = *color_table;
} else {
r = 0;
for (m = 0; m < num_materials; m++)
r += *color_table++ * *weight_table++;
}
*dst = r;
} else {
color_table = vpc->shade_color_table + 3*color_table_offset;
weight_table = vpc->shade_weight_table + weight_table_offset;
if (num_materials == 1) {
r = *color_table++;
g = *color_table++;
b = *color_table;
} else {
r = 0;
g = 0;
b = 0;
for (m = 0; m < num_materials; m++) {
r += *color_table++ * *weight_table;
g += *color_table++ * *weight_table;
b += *color_table++ * *weight_table;
}
}
dst[0] = r;
dst[1] = g;
dst[2] = b;
}
}
/*
* VPQuantize
*
* Quantize a floating point array and store the result in a byte array.
*/
void
VPQuantize(src, xlen, ylen, zlen, scale, maxvalue, dst,
dst_xstride, dst_ystride, dst_zstride)
float *src; /* floating point array */
int xlen, ylen, zlen; /* array dimensions */
double scale; /* scale to apply to each array element */
int maxvalue; /* clamp each array element to this value */
unsigned char *dst; /* store results here */
int dst_xstride; /* stride (in bytes) for destination array */
int dst_ystride;
int dst_zstride;
{
int value;
int x, y, z;
for (z = 0; z < zlen; z++) {
for (y = 0; y < ylen; y++) {
for (x = 0; x < xlen; x++) {
value = (int)rint(*src++ * scale);
if (value > maxvalue)
value = maxvalue;
else if (value < 0)
value = 0;
*dst = value;
dst += dst_xstride;
}
dst += dst_ystride - xlen*dst_xstride;
}
dst += dst_zstride - ylen*dst_ystride;
}
}
/*
* ExtractClassifiedVolume
*
* Extract a field from a classified volume into an array.
*/
static int
ExtractClassifiedVolume(vpc, axis, x0, y0, z0, x1, y1, z1, field, dst,
dst_xstride, dst_ystride, dst_zstride)
vpContext *vpc; /* context */
int axis; /* which axis to extract from */
int x0, y0, z0; /* origin of extracted region */
int x1, y1, z1; /* opposite corner of extracted region */
int field; /* field to extract */
void *dst; /* buffer to store result into */
int dst_xstride; /* stride (in bytes) for destination array */
int dst_ystride;
int dst_zstride;
{
int i, j, k; /* voxel coordinates in rotated object space */
int i0, j0, k0; /* origin of extracted region */
int i1, j1, k1; /* opposite corner of extracted region */
int dst_istride; /* stride (in bytes) for destination array */
int dst_jstride;
int dst_kstride;
int ilen, jlen, klen; /* volume size */
RLEVoxels *rle_voxels; /* run-length encoded, classified volume */
unsigned char *voxel; /* pointer to current voxel in volume */
unsigned char *dstptr; /* pointer to destination */
unsigned char *length; /* pointer to current run length */
int run_length; /* length of current run */
int is_non_zero; /* true if current run is nonzero */
int rle_bytes_per_voxel; /* size of unclassified voxel */
int value; /* value of parameter for current voxel */
ScanOffset *slice_runs; /* offsets to start of runs for a slice */
int field_size; /* size of field in bytes */
int field_offset; /* byte offset for voxel field */
/* initialize */
switch (axis) {
case VP_X_AXIS:
rle_voxels = vpc->rle_x;
i0 = y0; j0 = z0; k0 = x0; i1 = y1; j1 = z1; k1 = x1;
dst_istride = dst_ystride;
dst_jstride = dst_zstride;
dst_kstride = dst_xstride;
break;
case VP_Y_AXIS:
rle_voxels = vpc->rle_y;
i0 = z0; j0 = x0; k0 = y0; i1 = z1; j1 = x1; k1 = y1;
dst_istride = dst_zstride;
dst_jstride = dst_xstride;
dst_kstride = dst_ystride;
break;
case VP_Z_AXIS:
rle_voxels = vpc->rle_z;
i0 = x0; j0 = y0; k0 = z0; i1 = x1; j1 = y1; k1 = z1;
dst_istride = dst_xstride;
dst_jstride = dst_ystride;
dst_kstride = dst_zstride;
break;
default:
return(VPSetError(vpc, VPERROR_BAD_OPTION));
}
if (rle_voxels == NULL)
return(VPSetError(vpc, VPERROR_BAD_VOLUME));
if (rle_voxels->scan_offsets_per_slice < 1)
return(VPSetError(vpc, VPERROR_BAD_VOLUME));
ilen = rle_voxels->ilen;
jlen = rle_voxels->jlen;
klen = rle_voxels->klen;
rle_bytes_per_voxel = vpc->rle_bytes_per_voxel;
if (field == VP_OPACITY_FIELD || field == VP_CORRECTED_OPAC_FIELD) {
field_size = 1;
field_offset = rle_bytes_per_voxel - 1;
} else {
field_size = vpc->field_size[field];
field_offset = vpc->field_offset[field];
}
/* extract slice */
dstptr = dst;
for (k = k0; k <= k1; k++) {
slice_runs = &rle_voxels->scan_offsets[k *
rle_voxels->scan_offsets_per_slice];
voxel = (unsigned char *)rle_voxels->data + slice_runs->first_data;
length = rle_voxels->run_lengths + slice_runs->first_len;
run_length = 0;
is_non_zero = 1;
for (j = 0; j < jlen; j++) {
for (i = 0; i < ilen; i++) {
while (run_length == 0) {
run_length = *length++;
is_non_zero = !is_non_zero;
}
run_length--;
if (i >= i0 && i <= i1 && j >= j0 && j <= j1) {
if (is_non_zero) {
if (field_size == 1)
ByteField(dstptr, 0) = ByteField(voxel,
field_offset);
else if (field_size == 2)
ShortField(dstptr, 0) = ShortField(voxel,
field_offset);
else
IntField(dstptr, 0) = IntField(voxel,field_offset);
voxel += rle_bytes_per_voxel;
} else {
if (field_size == 1)
ByteField(dstptr, 0) = 0;
else if (field_size == 2)
ShortField(dstptr, 0) = 0;
else
IntField(dstptr, 0) = 0;
}
dstptr += dst_istride;
} else {
if (is_non_zero)
voxel += rle_bytes_per_voxel;
}
}
if (j >= j0 && j <= j1)
dstptr += dst_jstride - (i1-i0+1)*dst_istride;
}
dstptr += dst_kstride - (j1-j0+1)*dst_jstride;
}
return(VP_OK);
}
|