File: vp_linalg.c

package info (click to toggle)
volpack 1.0b3-10
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 4,864 kB
  • sloc: ansic: 12,208; sh: 9,078; makefile: 90; csh: 76
file content (351 lines) | stat: -rw-r--r-- 7,529 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
/*
 * vp_linalg.c
 *
 * A simple linear algebra package.
 *
 * Copyright (c) 1994 The Board of Trustees of The Leland Stanford
 * Junior University.  All rights reserved.
 *
 * Permission to use, copy, modify and distribute this software and its
 * documentation for any purpose is hereby granted without fee, provided
 * that the above copyright notice and this permission notice appear in
 * all copies of this software and that you do not sell the software.
 * Commercial licensing is available by contacting the author.
 * 
 * THE SOFTWARE IS PROVIDED "AS IS" AND WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
 * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
 *
 * Author:
 *    Phil Lacroute
 *    Computer Systems Laboratory
 *    Electrical Engineering Dept.
 *    Stanford University
 */

/*
 * $Date: 1994/12/30 23:52:38 $
 * $Revision: 1.27 $
 */

#include "vp_global.h"

static void MatrixMult ANSI_ARGS((double* p, double *a, double *b,
				  int l, int m, int n));

/*
 * vpIdentity3
 *
 * Initialize a Matrix3 to the identity.
 */

void
vpIdentity3(m)
vpMatrix3 m;
{
    m[0][0] = 1.;    m[0][1] = 0.;    m[0][2] = 0.;
    m[1][0] = 0.;    m[1][1] = 1.;    m[1][2] = 0.;
    m[2][0] = 0.;    m[2][1] = 0.;    m[2][2] = 1.;
}

/*
 * vpIdentity4
 *
 * Initialize a Matrix4 to the identity.
 */

void
vpIdentity4(m)
vpMatrix4 m;
{
    m[0][0] = 1.;    m[0][1] = 0.;    m[0][2] = 0.;    m[0][3] = 0.;
    m[1][0] = 0.;    m[1][1] = 1.;    m[1][2] = 0.;    m[1][3] = 0.;
    m[2][0] = 0.;    m[2][1] = 0.;    m[2][2] = 1.;    m[2][3] = 0.;
    m[3][0] = 0.;    m[3][1] = 0.;    m[3][2] = 0.;    m[3][3] = 1.;
}

/*
 * vpNormalize3
 *
 * Normalize a vector (divide it by its magnitude).  Return VPERROR_SINGULAR
 * if the magnitude is too small.
 */

vpResult
vpNormalize3(v)
vpVector3 v;
{
    double magsqr, invmag;
    int i;

    magsqr = 0.;
    for (i = 0; i < 3; i++)
	magsqr += v[i]*v[i];
    if (fabs(magsqr) < VP_EPS)
	return(VPERROR_SINGULAR);
    invmag = 1. / sqrt(magsqr);
    for (i = 0; i < 3; i++)
	v[i] *= invmag;
    return(VP_OK);
}

/*
 * vpMatrixVectorMult4
 *
 * Perform the matrix-vector multiplication v2 = m*v1.
 */

void
vpMatrixVectorMult4(v2, m, v1)
vpVector4 v2, v1;
vpMatrix4 m;
{
    int i, j;

    for (i = 0; i < 4; i++) {
	v2[i] = 0;
	for (j = 0; j < 4; j++)
	    v2[i] += m[i][j] * v1[j];
    }
}

/*
 * vpMatrixMult4
 *
 * Perform the matrix multiplication m3 = m2 * m1.
 */

void
vpMatrixMult4(m3, m2, m1)
vpMatrix4 m3, m2, m1;
{
    MatrixMult((double *)m3, (double *)m2, (double *)m1, 4, 4, 4);
}

/*
 * MatrixMult
 *
 * Perform the matrix multiplication p = a * b.
 */

static void
MatrixMult(p, a, b, l, m, n)
double *p;	/* result matrix, size l by n */
double *a;	/* first factor, size l by m */
double *b;	/* second factor, size m by n */
int l, m, n;
{
    int i, j, k;

    if (l <= 0 || m <= 0 || n <= 0)
	VPBug("MatrixMult called with non-positive matrix size");
    for (i = 0; i < l; i++) {
	for (j = 0; j < n; j++) {
	    p[i*n+j] = 0;
	    for (k = 0; k < m; k++)
		p[i*n+j] += a[i*n+k] * b[k*n+j];
	}
    }
}

/*
 * vpCrossProduct
 *
 * Compute the cross product p = v * w.
 */

void
vpCrossProduct(p, v, w)
vpVector3 p, v, w;
{
    p[0] = v[1]*w[2] - v[2]*w[1];
    p[1] = v[2]*w[0] - v[0]*w[2];
    p[2] = v[0]*w[1] - v[1]*w[0];
}

/*
 * vpSolveSystem4
 *
 * Solve the linear system a*xi = bi where a is a 4-by-4 matrix and bi
 * is a column of the 4-by-m matrix b.  Each column bi in b is replaced
 * by the corresponding solution vector xi.  The matrix a is destroyed.
 * The method used is Gauss-Jordan elimination with partial pivoting and
 * implicit scaling (based on the discussion in Numerical Recipes in C
 * by Press, Flannery, Teukolsky and Vetterling).
 *
 * Return VPERROR_SINGULAR if matrix is singular.
 */

vpResult
vpSolveSystem4(a, b, m)
vpMatrix4 a;	/* linear system matrix */
double **b;	/* RHS vectors on input, solution vectors on output;
		   b[i] is a Vector4 */
int m;		/* number of vectors in b */
{
    vpVector4 row_scale_factor;	/* normalization for each row */
    int ipivot;			/* row containing pivot */
    int pivot[4];		/* after the reduction loop, row i has
				   been pivoted to row pivot[i] */
    int i, j, k, l;		/* loop indices */
    double *aptr;		/* pointer into a */
    double entry;		/* entry in a */
    double max_entry;		/* maximum entry in row */
    double inv_entry;		/* inverse of an entry in a */
    vpVector4 tmpv;		/* temporary vector for undoing row
				   interchange in solution vectors */

    /* initialize */
    for (i = 0; i < 4; i++)
	pivot[i] = -1;

    /* find the largest element in each row and compute normalization
       for implicit scaling */
    aptr = &a[0][0];
    for (i = 0; i < 4; i++) {
	max_entry = 0.;
	for (j = 0; j < 4; j++) {
	    if (*aptr < 0) {
		if (-*aptr > max_entry)
		    max_entry = -*aptr;
	    } else {
		if (*aptr > max_entry)
		    max_entry = *aptr;
	    }
	    aptr++;
	}
	if (fabs(max_entry) < VP_EPS)
	    return(VPERROR_SINGULAR);
	row_scale_factor[i] = 1. / max_entry;
    }

    /* loop over the columns of a */
    for (j = 0; j < 4; j++) {
	/* loop over the rows of a and choose a pivot element in the
	   current column, ignoring rows containing previous pivots */
	max_entry = 0.;
	for (i = 0; i < 4; i++) {
	    if (pivot[i] < 0) {
		entry = a[i][j] * row_scale_factor[i];
		if (entry < 0) {
		    if (-entry > max_entry) {
			max_entry = -entry;
			ipivot = i;
		    }
		} else {
		    if (entry > max_entry) {
			max_entry = entry;
			ipivot = i;
		    }
		}
	    }
	}
	if (fabs(max_entry) < VP_EPS)
	    return(VPERROR_SINGULAR);
	pivot[ipivot] = j;
	inv_entry = 1. / a[ipivot][j];

	/* scale the pivot row by the pivot element */
	for (l = j+1; l < 4; l++)
	    a[ipivot][l] *= inv_entry;
	for (l = 0; l < m; l++)
	    b[l][ipivot] *= inv_entry;

	/* subtract a multiple of the pivot row from the other rows */
	for (k = 0; k < 4; k++) {
	    if (k != ipivot) {
		entry = a[k][j];
		for (l = j+1; l < 4; l++)
		    a[k][l] -= a[ipivot][l] * entry;
		for (l = 0; l < m; l++)
		    b[l][k] -= b[l][ipivot] * entry;
	    }
	}
    }

    /* undo row interchanges in solution vectors */
    for (j = 0; j < m; j++) {
	for (i = 0; i < 4; i++)
	    tmpv[pivot[i]] = b[j][i];
	for (i = 0; i < 4; i++)
	    b[j][i] = tmpv[i];
    }
    return(VP_OK);
}

/*
 * VPLoadTranslation
 *
 * Load a translation matrix.
 */

void
VPLoadTranslation(m, tx, ty, tz)
vpMatrix4 m;
double tx, ty, tz;
{
    vpIdentity4(m);
    m[0][3] = tx;
    m[1][3] = ty;
    m[2][3] = tz;
}

/*
 * VPLoadRotation
 *
 * Load a rotation matrix.
 */

void
VPLoadRotation(m, axis, degrees)
vpMatrix4 m;
int axis;
double degrees;
{
    vpMatrix4 tmp;
    double radians, sintheta, costheta;

    radians = degrees * M_PI / 180.;
    sintheta = sin(radians);
    costheta = cos(radians);
    vpIdentity4(m);
    switch (axis) {
    case VP_X_AXIS:
	m[1][1] = costheta;
	m[1][2] = sintheta;
	m[2][1] = -sintheta;
	m[2][2] = costheta;
	break;
    case VP_Y_AXIS:
	m[0][0] = costheta;
	m[0][2] = -sintheta;
	m[2][0] = sintheta;
	m[2][2] = costheta;
	break;
    case VP_Z_AXIS:
	m[0][0] = costheta;
	m[0][1] = sintheta;
	m[1][0] = -sintheta;
	m[1][1] = costheta;
	break;
    default:
	VPBug("bad axis in VPLoadRotation");
    }
}

/*
 * VPLoadScale
 *
 * Load a scale matrix.
 */

void
VPLoadScale(m, sx, sy, sz)
vpMatrix4 m;
double sx, sy, sz;
{
    vpIdentity4(m);
    m[0][0] = sx;
    m[1][1] = sy;
    m[2][2] = sz;
}