File: vp_shade.c

package info (click to toggle)
volpack 1.0b3-10
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 4,864 kB
  • sloc: ansic: 12,208; sh: 9,078; makefile: 90; csh: 76
file content (770 lines) | stat: -rw-r--r-- 25,598 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
/*
 * vp_shade.c
 *
 * Routines to implement the Phong shading equation using a lookup-table.
 *
 * Copyright (c) 1994 The Board of Trustees of The Leland Stanford
 * Junior University.  All rights reserved.
 *
 * Permission to use, copy, modify and distribute this software and its
 * documentation for any purpose is hereby granted without fee, provided
 * that the above copyright notice and this permission notice appear in
 * all copies of this software and that you do not sell the software.
 * Commercial licensing is available by contacting the author.
 * 
 * THE SOFTWARE IS PROVIDED "AS IS" AND WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
 * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
 *
 * Author:
 *    Phil Lacroute
 *    Computer Systems Laboratory
 *    Electrical Engineering Dept.
 *    Stanford University
 */

/*
 * $Date: 1994/12/30 23:52:38 $
 * $Revision: 1.27 $
 */

#include "vp_global.h"

/*
 * Lookup Table Shading and Normal Vector Encoding
 *
 * The shader defined in this file implements the Phong shading equation
 * (I = Ia + Id*(N.L) + Is*(N.H)^n) using lookup tables.  To use this
 * shader you must include a "normal" field in each voxel.  This field
 * is computed by preprocessing the volume to estimate a surface normal
 * vector for each voxel (using the central-difference gradient operator)
 * and then encoding the normal in an index (13 bits in this program).
 * An index is stored in the normal field of each voxel.   At rendering
 * time the index is used to look up a color for the voxel in a table.
 *
 * There are many ways a normal vector can be encoded using the 13 bits of
 * the index.  A straight-forward method is to use 6 bits for the x component
 * of the vector, 6 bits for the y component, and 1 bit to indicate the sign
 * of the z component.  Assuming that the vector is normalized the z
 * component can be reconstructed from x and y.  Unfortunately this method
 * results in an uneven distribution of code points: the distance between
 * exactly-representable vectors is much smaller near N = +z or -z than
 * N = +x, -x, +y or -z (where x, y and z are the unit vectors).  This
 * can result in significant quantization error near the "equator", or more
 * table storage than necessary near the "poles".
 *
 * The normal vector encoding scheme used here is derived from a recursive
 * tesselation of a regular octahedron (an eight-sided solid with
 * equilateral triangular faces).  Consider subdividing each triangular
 * face into four smaller equilateral triangles, and then subdividing those
 * triangles recursively until a sufficiently large number of triangles
 * have been generated.  The representable normal vectors are the vectors
 * connecting the center of the solid to the vertices of the triangles.
 * The distribution of these vectors is not perfectly uniform (the density
 * is lower at the "mid-latitudes"), but the variation is relatively small.
 *
 * Each normal vector is now assigned a unique index as follows.  Let the
 * origin be at the center of the solid, and the x, y and z axes each
 * intersect a vertex of the original octahedron.  Use one bit of the index
 * to indicate the sign of the z component of the normal.  Now project the
 * subdivided triangle vertices onto the x-y plane.  This forms a square
 * grid of dots rotated 45 degrees relative to the x-y axes.  Starting at
 * (x=0, y=max), assign sequential integers to each normal vector projection,
 * proceeding left-to-right and top-to-bottom.  Finally, append the sign bit
 * for the z component to the least-significant end of the integer to get
 * the normal vector encoding.
 *
 * This scheme is useful because it is easy to compute the vector components
 * from an index and conversely to find the closest index for a given vector,
 * yet the distribution of representable vectors is pretty uniform.
 *
 * XXX better method is to rotate 45 degrees (M = [1 -1 ; 1 1]) and then
 * assign points in scanline order; no lookup tables needed; implement this!
 *
 * The layout of the shading lookup table is as follows:
 *    float shade_table[MAX_NORMAL+1][materials][color_channels]
 * where materials is the number of materials and color_channels is 1
 * for grayscale intensities or 3 for RGB intensities (stored in R,G,B
 * order).
 */

/* define normal index parameters; if you change these then you
   must change VP_NORM_MAX in volpack.h */
#define NORM_13			/* use 13 bit normals */
#undef NORM_15			/* don't use 15 bit normals */

#ifdef NORM_13			/* parameters for 13 bit normals */
#define NORM_N		44	/*   N parameter for normal computation */
#define NORM_BITS	13	/*   number of bits to encode a normal:
				     (1+ceil(log2(2*(N*N+N+1)))) */
#define MAX_NORMAL	7923	/*   maximum normal index */
#endif

#ifdef NORM_15			/* parameters for 15 bit normals */
#define NORM_N		90
#define NORM_BITS	15
#define MAX_NORMAL	16131
#endif


/* static lookup tables (computed only once, used for all vpContexts) */
static int NormalTablesInitialized = 0; /* set to 1 after initialization */
static short *NormalPy;	/* NormalPy[py] = normal index for the normal
				   whose projection in the x-y plane is (0,py)
				   and whose z component is +
				   (py = -NORM_N to +NORM_N) */
static short NormalPyStorage[1+2*NORM_N];	/* storage for NormalPy */
static short *NormalXLimit;	/* max abs(x) allowed for a given y */
static short NormalXLimitStorage[1+2*NORM_N]; /* storage for NormalXLimit */
static void InitNormalTables ANSI_ARGS((void));

/*
 * InitNormalTables
 *
 * Initialize lookup tables for computing normal indices.
 */

static void
InitNormalTables()
{
    int y, xcount, codepoint;
    int sum;
    double value;

    /* initialize NormalPy */
    xcount = 1;
    codepoint = 2;
    NormalPy = &NormalPyStorage[NORM_N];
    NormalXLimit = &NormalXLimitStorage[NORM_N];
    for (y = -NORM_N; y <= NORM_N; y++) {
	NormalPy[y] = codepoint + (((xcount-1)/2) << 1);
	codepoint += (xcount << 1);
	NormalXLimit[y] = (xcount-1)/2;
	if (y < 0)
	    xcount += 2;
	else
	    xcount -= 2;
    }

    NormalTablesInitialized = 1;
}

/*
 * vpNormalIndex
 *
 * Return the best normal index for the given normal vector.
 */

int
vpNormalIndex(nx, ny, nz)
double nx, ny, nz;
{
    int n, x, y, xlimit;
    double denom, denominv;

    if (!NormalTablesInitialized)
	InitNormalTables();
    denom = (nx < 0) ? -nx : nx;
    denom += (ny < 0) ? -ny : ny;
    denom += (nz < 0) ? -nz : nz;
    denominv = (double)NORM_N / denom;
    x = (int)rint(nx * denominv);
    y = (int)rint(ny * denominv);

    /* clamp x */
    xlimit = NormalXLimit[y];
    if (x < 0) {
	if (-x > xlimit)
	    x = -xlimit;
    } else {
	if (x > xlimit)
	    x = xlimit;
    }

    n = NormalPy[y] + (x << 1);
    if (nz < 0)
	n |= 1;
    ASSERT(n >= 0 && n <= VP_NORM_MAX);
    return(n);
}

/*
 * vpNormal
 *
 * Compute normal vector components given a normal vector index.
 */

vpResult
vpNormal(n, nx, ny, nz)
int n;			/* normal index */
double *nx, *ny, *nz;	/* storage for result */
{
    int py, px, pz, pxlimit2;
    double pxd, pyd, pzd, plength;

    if (!NormalTablesInitialized)
	InitNormalTables();
    for (py = -NORM_N; py <= NORM_N; py++) {
	pxlimit2 = 2 * ((py<0) ? (NORM_N + py) : (NORM_N - py));
	if (NormalPy[py] - pxlimit2 <= n &&
	    NormalPy[py] + pxlimit2 + 1 >= n) {
	    break;
	}
    }
    if (py > NORM_N) {
	return(VPERROR_BAD_VALUE);
    } else {
	px = (n - NormalPy[py]) >> 1;
	pz = NORM_N;
	if (px < 0)
	    pz += px;
	else
	    pz -= px;
	if (py < 0)
	    pz += py;
	else
	    pz -= py;
	if (n & 1)
	    pz = -pz;
	pxd = (double)px;
	pyd = (double)py;
	pzd = (double)pz;
	plength = 1. / sqrt(pxd*pxd+pyd*pyd+pzd*pzd);
	*nx = pxd * plength;
	*ny = pyd * plength;
	*nz = pzd * plength;
    }
    return(VP_OK);
}

/*
 * vpScanlineNormals
 *
 * Compute normals and/or gradients for a scanline of voxels.
 */

vpResult
vpScanlineNormals(vpc, length, scalar_data, scalar_minus_y,
		  scalar_plus_y, scalar_minus_z, scalar_plus_z,
		  voxel_data, scalar_field, grad_field, norm_field)
vpContext *vpc;		/* context */
int length;		/* number of scalars in scanline */
unsigned char *scalar_data;	/* scanline of scalar data */
unsigned char *scalar_minus_y;	/* adjacent scanline of scalar data (-y) */
unsigned char *scalar_plus_y;	/* adjacent scanline of scalar data (+y) */
unsigned char *scalar_minus_z;	/* adjacent scanline of scalar data (-z) */
unsigned char *scalar_plus_z;	/* adjacent scanline of scalar data (+z) */
void *voxel_data;	/* location to store first voxel */
int scalar_field;	/* voxel field for scalar, or VP_SKIP_FIELD */
int grad_field;		/* voxel field for gradient, or VP_SKIP_FIELD */
int norm_field;		/* voxel field for normal, or VP_SKIP_FIELD */
{
    int x;			/* voxel index */
    double grad_x;		/* components of the gradient vector */
    double grad_y;
    double grad_z;
    double twice_grad_mag;	/* twice the magnitude of the gradient */
    int grad;			/* gradient magnitude */
    int norm;			/* normal index */
    int edge;			/* true if this scanline is on the edge
				   of the volume */
    int voxel_size;		/* size of a voxel in bytes */
    int scalar_offset;		/* byte offset for scalar in voxel */
    int grad_offset;		/* byte offset for gradient in voxel */
    int norm_offset;		/* byte offset for normal in voxel */
    char *voxel;		/* pointer to current voxel */
    int retcode;

    /* check for errors */
    if ((retcode = VPCheckVoxelFields(vpc)) != VP_OK)
	return(retcode);
    if (scalar_field != VP_SKIP_FIELD) {
	if (scalar_field < 0 || scalar_field >= vpc->num_voxel_fields)
	    return(VPSetError(vpc, VPERROR_BAD_VALUE));
	if (vpc->field_size[scalar_field] != VP_SCALAR_SIZE)
	    return(VPSetError(vpc, VPERROR_BAD_VALUE));
	scalar_offset = vpc->field_offset[scalar_field];
    }
    if (grad_field != VP_SKIP_FIELD) {
	if (grad_field < 0 || grad_field >= vpc->num_voxel_fields)
	    return(VPSetError(vpc, VPERROR_BAD_VALUE));
	if (vpc->field_size[grad_field] != VP_GRAD_SIZE)
	    return(VPSetError(vpc, VPERROR_BAD_VALUE));
	grad_offset = vpc->field_offset[grad_field];
    }
    if (norm_field != VP_SKIP_FIELD) {
	if (norm_field < 0 || norm_field >= vpc->num_voxel_fields)
	    return(VPSetError(vpc, VPERROR_BAD_VALUE));
	if (vpc->field_size[norm_field] != VP_NORM_SIZE)
	    return(VPSetError(vpc, VPERROR_BAD_VALUE));
	norm_offset = vpc->field_offset[norm_field];
    }
    voxel_size = vpc->raw_bytes_per_voxel;

    /* compute the scanline */
    voxel = voxel_data;
    if (scalar_minus_y == NULL || scalar_plus_y == NULL ||
	scalar_minus_z == NULL || scalar_plus_z == NULL) {
	edge = 1;
    } else {
	edge = 0;
    }
    for (x = 0; x < length; x++) {
	/* compute gradient and normal for voxel x and store */
	if (edge || x == 0 || x == length-1) {
	    if (scalar_field != VP_SKIP_FIELD)
		ByteField(voxel, scalar_offset) = scalar_data[x];
	    if (grad_field != VP_SKIP_FIELD)
		ByteField(voxel, grad_offset) = 0;
	    if (norm_field != VP_SKIP_FIELD)
		ShortField(voxel, norm_offset) = 0;
	} else {
	    grad_x = (int)scalar_data[x+1] - (int)scalar_data[x-1];
	    grad_y = (int)scalar_plus_y[x] - (int)scalar_minus_y[x];
	    grad_z = (int)scalar_plus_z[x] - (int)scalar_minus_z[x];
	    twice_grad_mag = sqrt(grad_x*grad_x+grad_y*grad_y+grad_z*grad_z);
	    if (scalar_field != VP_SKIP_FIELD)
		ByteField(voxel, scalar_offset) = scalar_data[x];
	    if (grad_field != VP_SKIP_FIELD) {
		grad = (int)rint(0.5 * twice_grad_mag);
		ASSERT(grad >= 0 && grad <= VP_GRAD_MAX);
		ByteField(voxel, grad_offset) = grad;
	    }
	    if (norm_field != VP_SKIP_FIELD) {
		if (twice_grad_mag < VP_EPS)
		    norm = 0;
		else
		    norm = vpNormalIndex(grad_x / twice_grad_mag,
					 grad_y / twice_grad_mag,
					 grad_z / twice_grad_mag);
		ShortField(voxel, norm_offset) = norm;
	    }
	}

	/* go on to next voxel */
	voxel += voxel_size;
    }
    return(VP_OK);
}

/*
 * vpVolumeNormals
 *
 * Compute normals and/or gradients for a volume.  Result is stored
 * in raw_voxels in the current context.
 */

vpResult
vpVolumeNormals(vpc, scalar_data, length, scalar_field, grad_field, norm_field)
vpContext *vpc;		/* context */
unsigned char *scalar_data;	/* 3D array of scalar data */
int length;		/* number of scalars in scalar_data */
int scalar_field;	/* voxel field for scalar, or VP_SKIP_FIELD */
int grad_field;		/* voxel field for gradient, or VP_SKIP_FIELD */
int norm_field;		/* voxel field for normal, or VP_SKIP_FIELD */
{
    int xlen, ylen, zlen;	/* volume dimensions */
    int y, z;			/* loop indices */
    unsigned char *scalar;	/* pointer to current scalar */
    int scalar_ystride;		/* stride to next scalar scanline */
    int scalar_zstride;		/* stride to next scalar slice */
    char *voxel;		/* pointer to current voxel */
    int voxel_ystride;		/* stride to next voxel scanline */
    int voxel_zstride;		/* stride to next voxel slice */
    unsigned char *s_py, *s_my, *s_pz, *s_mz; /* ptrs to adjacent scans */
    int retcode;

    /* check for errors */
    if ((retcode = VPCheckRawVolume(vpc)) != VP_OK)
	return(retcode);
    xlen = vpc->xlen;
    ylen = vpc->ylen;
    zlen = vpc->zlen;
    if (xlen * ylen * zlen != length)
	return(VPSetError(vpc, VPERROR_BAD_SIZE));

    /* initialize */
    scalar = scalar_data;
    scalar_ystride = xlen;
    scalar_zstride = xlen*ylen;
    voxel = vpc->raw_voxels;
    voxel_ystride = vpc->ystride;
    voxel_zstride = vpc->zstride;

    /* compute volume data */
    for (z = 0; z < zlen; z++) {
	ReportStatus(vpc, (double)z / (double)zlen);
	for (y = 0; y < ylen; y++) {
	    s_my = (y == 0)      ? NULL : scalar - scalar_ystride;
	    s_py = (y == ylen-1) ? NULL : scalar + scalar_ystride;
	    s_mz = (z == 0)      ? NULL : scalar - scalar_zstride;
	    s_pz = (z == zlen-1) ? NULL : scalar + scalar_zstride;
	    retcode = vpScanlineNormals(vpc, xlen, scalar, s_my, s_py,
					s_mz, s_pz, voxel, scalar_field,
					grad_field, norm_field);
	    if (retcode != VP_OK)
		return(retcode);
	    scalar += scalar_ystride;
	    voxel += voxel_ystride;
	}
	scalar += scalar_zstride - ylen*scalar_ystride;
	voxel += voxel_zstride - ylen*voxel_ystride;
    }
    ReportStatus(vpc, 1.0);
    return(VP_OK);
}

/*
 * vpShadeTable
 *
 * Compute a shading lookup table for the current lighting and
 * model matrix.
 */

vpResult
vpShadeTable(vpc)
vpContext *vpc;
{
    int num_lights;		/* number of enabled lights */
    vpVector3 light_color[VP_MAX_LIGHTS]; /* light colors */
    vpVector4 obj_light[VP_MAX_LIGHTS]; /* light_vector in object space */
    vpVector4 obj_highlight[VP_MAX_LIGHTS]; /* halfway-vector */
    vpVector4 obj_viewpoint;	/* viewpoint in object coordinates */
    vpMatrix4 a;		/* linear system matrix */
    double *rhs[VP_MAX_LIGHTS+1];/* right-hand-side/solution vectors */
    int px, py, pz;		/* code point coordinates (integers) */
    double pxd, pyd, pzd;	/* code point coordinates (doubles) */
    double plength;
    int pxlimit;		/* maximum absolute value of px for this py */
    double nx, ny, nz;		/* normal vector components */
    double n_dot_v_xy;		/* normal_vector dot obj_viewpoint (x&y) */
    double n_dot_v_z;		/* normal_vector dot obj_viewpoint (z) */
    double n_dot_v;		/* normal_vector dot obj_viewpoint */
    double n_dot_l_xy;		/* normal_vector dot light_vector (x&y) */
    double n_dot_l_z;		/* normal_vector dot light_vector (z) */
    double n_dot_l;		/* normal_vector dot light_vector */
    double n_dot_h_xy;		/* normal_vector dot halfway_vector (x&y) */
    double n_dot_h_z;		/* normal_vector dot halfway_vector (z) */
    double n_dot_h;		/* normal_vector dot halfway_vector */
    float r, g, b;		/* intensities to store in shade table */
    float *table_row;		/* pointer to table row for current normal */
    float *table;		/* pointer to table entry */
    float *shadow_table_row;	/* pointer to table row for current normal */
    float *shadow_table;	/* pointer to shadow table entry */
    int surface_side;		/* EXT_SURFACE or INT_SURFACE */
    int znegative;		/* true iff nz is negative */
    int light_both_sides;	/* use two-sided lighting */
    int reverse_surface_sides;	/* reverse interior and exterior */
    int color_channels;		/* number of color channels */
    int num_materials;		/* number of materials */
    int retcode;
    double *matl_props;		/* material properties */
    int enable_shadows;		/* true if shadows are enabled */
    int shadow_light;		/* light index for light casting shadows */
    int clamp;			/* true if table entries should be clamped */
    int c, l, m;
#ifdef DEBUG
    vpVector4 tmpv;
#endif
    DECLARE_TIME(t0);
    DECLARE_TIME(t1);

    /* error checking */
    if (vpc->shading_mode != LOOKUP_SHADER)
	return(VP_OK);
    if ((retcode = VPCheckShader(vpc)) != VP_OK)
	return(retcode);
    if ((retcode = VPCheckShadows(vpc)) != VP_OK)
	return(retcode);
    ASSERT(vpc->color_channels == 1 || vpc->color_channels == 3);

    /* start timer */
    GET_TIME(vpc, t0);

    /* transform viewpoint vector and light vectors to object space */
    vpSetVector4(obj_viewpoint, 0., 0., 1., 1.);
    rhs[0] = obj_viewpoint;
    num_lights = 0;
    for (c = 0; c < VP_MAX_LIGHTS; c++) {
	if (vpc->light_enable[c]) {
	    bcopy(vpc->light_color[c], light_color[num_lights],
		  sizeof(vpVector3));
	    bcopy(vpc->light_vector[c], obj_light[num_lights],
		  sizeof(vpVector4));
	    rhs[num_lights+1] = obj_light[num_lights];
	    num_lights++;
	}
    }
    bcopy(vpc->transforms[VP_MODEL], a, sizeof(vpMatrix4));
    retcode = vpSolveSystem4(a, rhs, num_lights+1);
    if (retcode != VP_OK)
	return(retcode);

#ifdef DEBUG
    /* make sure the solver gave the right answer */
    vpMatrixVectorMult4(tmpv, vpc->transforms[VP_MODEL], obj_viewpoint);
    if (fabs(tmpv[0]) > VP_EPS || fabs(tmpv[1]) > VP_EPS ||
	fabs(tmpv[2] - 1.) > VP_EPS || fabs(tmpv[3] - 1.) > VP_EPS) {
	printf("\n");
	printf("Modelview:\n");
	printf("    %12.8f %12.8f %12.8f %12.8f\n",
	   vpc->transforms[VP_MODEL][0][0], vpc->transforms[VP_MODEL][0][1],
	   vpc->transforms[VP_MODEL][0][2], vpc->transforms[VP_MODEL][0][3]);
	printf("    %12.8f %12.8f %12.8f %12.8f\n",
	   vpc->transforms[VP_MODEL][1][0], vpc->transforms[VP_MODEL][1][1],
	   vpc->transforms[VP_MODEL][1][2], vpc->transforms[VP_MODEL][1][3]);
	printf("    %12.8f %12.8f %12.8f %12.8f\n",
	   vpc->transforms[VP_MODEL][2][0], vpc->transforms[VP_MODEL][2][1],
	   vpc->transforms[VP_MODEL][2][2], vpc->transforms[VP_MODEL][2][3]);
	printf("    %12.8f %12.8f %12.8f %12.8f\n",
	   vpc->transforms[VP_MODEL][3][0], vpc->transforms[VP_MODEL][3][1],
	   vpc->transforms[VP_MODEL][3][2], vpc->transforms[VP_MODEL][3][3]);
	VPBug("SolveSystem failed on viewpoint");
    }
    l = 0;
    for (c = 0; c < VP_MAX_LIGHTS; c++) {
	if (vpc->light_enable[c]) {
	    vpMatrixVectorMult4(tmpv, vpc->transforms[VP_MODEL], obj_light[l]);
	    if (fabs(tmpv[0] - vpc->light_vector[c][0]) > VP_EPS ||
		fabs(tmpv[1] - vpc->light_vector[c][1]) > VP_EPS ||
		fabs(tmpv[2] - vpc->light_vector[c][2]) > VP_EPS ||
		fabs(tmpv[3] - vpc->light_vector[c][3]) > VP_EPS)
		VPBug("SolveSystem failed on light %d\n", c);
	    l++;
	}
    }
#endif

    /* compute highlight vectors */
    for (l = 0; l < num_lights; l++) {
	obj_highlight[l][0] = obj_light[l][0] + obj_viewpoint[0];
	obj_highlight[l][1] = obj_light[l][1] + obj_viewpoint[1];
	obj_highlight[l][2] = obj_light[l][2] + obj_viewpoint[2];
	vpNormalize3(obj_highlight[l]);
    }

    /* initialize options */
    light_both_sides = vpc->light_both_sides;
    reverse_surface_sides = vpc->reverse_surface_sides;
    color_channels = vpc->color_channels;
    num_materials = vpc->num_materials;
    table = vpc->shade_color_table;
    enable_shadows = vpc->enable_shadows;
    if (enable_shadows) {
	shadow_table = vpc->shadow_color_table;
	shadow_light = vpc->shadow_light_num - VP_LIGHT0;
	bzero(shadow_table, vpc->shadow_color_table_size);
    } else {
	shadow_table = NULL;
	shadow_light = -1;
    }
    clamp = vpc->clamp_shade_table;

    /* store shade table entries for the zero-vector */
    for (znegative = 0; znegative <= 1; znegative++) {
	if (znegative) {
	    if (reverse_surface_sides)
		surface_side = EXT_SURFACE;
	    else
		surface_side = INT_SURFACE;
	} else {
	    if (reverse_surface_sides)
		surface_side = INT_SURFACE;
	    else
		surface_side = EXT_SURFACE;
	}
	for (m = 0; m < num_materials; m++) {
	    matl_props = vpc->matl_props[m][surface_side];
	    *table++ = matl_props[MATL_AMB_R];
	    if (color_channels == 3) {
		*table++ = matl_props[MATL_AMB_G];
		*table++ = matl_props[MATL_AMB_B];
	    }
	}
    }
    table_row = table;
    if (enable_shadows) {
	for (znegative = 0; znegative <= 1; znegative++) {
	    for (m = 0; m < num_materials; m++) {
		*shadow_table++ = 0;
		if (color_channels == 3) {
		    *shadow_table++ = 0;
		    *shadow_table++ = 0;
		}
	    }
	}
    }
    shadow_table_row = shadow_table;

    /* compute the shade table entries for nonzero normals */
    for (py = -NORM_N; py <= NORM_N; py++) {
	pxlimit = (py < 0) ? (NORM_N + py) : (NORM_N - py);
	pz = -1;
	pxd = (double)(-pxlimit-1);
	pyd = (double)py;
	pzd = (double)(-1);
	for (px = -pxlimit; px <= pxlimit; px++) {
	    /* compute normal vector components for this code point */
	    pxd += 1.0;
	    if (px <= 0) {
		pz++;
		pzd += 1.0;
	    } else {
		pz--;
		pzd -= 1.0;
	    }
	    plength = 1. / sqrt(pxd*pxd + pyd*pyd + pzd*pzd);
	    nx = pxd * plength;
	    ny = pyd * plength;
	    nz = pzd * plength;

	    /* compute n dot v (for determining surface side) */
	    n_dot_v_xy = nx*obj_viewpoint[0] + ny*obj_viewpoint[1];
	    n_dot_v_z = nz*obj_viewpoint[2];

	    /* store ambient light terms */
	    table = table_row;
	    for (znegative = 0; znegative <= 1; znegative++) {
		if (znegative)
		    n_dot_v = n_dot_v_xy - n_dot_v_z;
		else
		    n_dot_v = n_dot_v_xy + n_dot_v_z;
		if (reverse_surface_sides)
		    n_dot_v = -n_dot_v;
		if (n_dot_v >= 0)
		    surface_side = EXT_SURFACE;
		else
		    surface_side = INT_SURFACE;
		for (m = 0; m < num_materials; m++) {
		    matl_props = vpc->matl_props[m][surface_side];
		    *table++ = matl_props[MATL_AMB_R];
		    if (color_channels == 3) {
			*table++ = matl_props[MATL_AMB_G];
			*table++ = matl_props[MATL_AMB_B];
		    }
		}
	    }

	    /* loop over lights */
	    for (l = 0; l < num_lights; l++) {
		if (l == shadow_light)
		    table = shadow_table_row;
		else
		    table = table_row;

		/* compute n dot l and n dot h */
		n_dot_l_xy = nx*obj_light[l][0] + ny*obj_light[l][1];
		n_dot_l_z = nz*obj_light[l][2];
		n_dot_h_xy = nx*obj_highlight[l][0] + ny*obj_highlight[l][1];
		n_dot_h_z = nz*obj_highlight[l][2];

		/* loop over the two signs for z */
		for (znegative = 0; znegative <= 1; znegative++) {
		    if (znegative) {
			n_dot_v = n_dot_v_xy - n_dot_v_z;
			n_dot_l = n_dot_l_xy - n_dot_l_z;
			n_dot_h = n_dot_h_xy - n_dot_h_z;
		    } else {
			n_dot_v = n_dot_v_xy + n_dot_v_z;
			n_dot_l = n_dot_l_xy + n_dot_l_z;
			n_dot_h = n_dot_h_xy + n_dot_h_z;
		    }
		    if (reverse_surface_sides) {
			n_dot_v = -n_dot_v;
			n_dot_l = -n_dot_l;
			n_dot_h = -n_dot_h;
		    }
		    if (n_dot_v >= 0)
			surface_side = EXT_SURFACE;
		    else
			surface_side = INT_SURFACE;
		    if (light_both_sides) {
			n_dot_l = fabs(n_dot_l);
			n_dot_h = fabs(n_dot_h);
		    } else if (surface_side == EXT_SURFACE) {
			n_dot_l = MAX(n_dot_l, 0.0);
			n_dot_h = MAX(n_dot_h, 0.0);
		    } else {
			n_dot_l = MAX(-n_dot_l, 0.0);
			n_dot_h = MAX(-n_dot_h, 0.0);
		    }

		    /* loop over material types */
		    for (m = 0; m < num_materials; m++) {
			matl_props = vpc->matl_props[m][surface_side];
			*table++ += light_color[l][0]*(matl_props[MATL_DIFF_R]*
				    n_dot_l + matl_props[MATL_SPEC_R]*
				    pow(n_dot_h, matl_props[MATL_SHINY]));
			if (color_channels == 3) {
			    *table++ += light_color[l][1]*
				    (matl_props[MATL_DIFF_G]*
				    n_dot_l + matl_props[MATL_SPEC_G]*
				    pow(n_dot_h, matl_props[MATL_SHINY]));
			    *table++ += light_color[l][2]*
				    (matl_props[MATL_DIFF_B]*
				    n_dot_l + matl_props[MATL_SPEC_B]*
				    pow(n_dot_h, matl_props[MATL_SHINY]));
			}
		    } /* for m */
		} /* for znegative */
	    } /* for l */

	    /* clamp */
	    if (clamp) {
		if (enable_shadows) {
		    table = table_row;
		    shadow_table = shadow_table_row;
		    for (znegative = 0; znegative <= 1; znegative++) {
			for (m = 0; m < num_materials; m++) {
			    for (c = 0; c < color_channels; c++) {
				if (*table > 255.)
				    *table = 255.;
				if (*table + *shadow_table > 255.)
				    *shadow_table = 255. - *table;
				shadow_table++;
				table++;
			    }
			}
		    }
		} else {
		    table = table_row;
		    for (znegative = 0; znegative <= 1; znegative++) {
			for (m = 0; m < num_materials; m++) {
			    for (c = 0; c < color_channels; c++) {
				if (*table > 255.)
				    *table = 255.;
				table++;
			    }
			}
		    }
		}
	    }

	    if (num_materials == 1) {
		table_row += 2*color_channels;
	    } else {
		if (color_channels == 1)
		    table_row += 2*num_materials;
		else
		    table_row += 6*num_materials;
	    }

	    if (enable_shadows) {
		if (num_materials == 1) {
		    shadow_table_row += 2*color_channels;
		} else {
		    if (color_channels == 1)
			shadow_table_row += 2*num_materials;
		    else
			shadow_table_row += 6*num_materials;
		}
	    }
	} /* for px */
    } /* for py */

    /* stop timer */
    GET_TIME(vpc, t1);
    STORE_TIME(vpc, VPTIMER_SHADE, t0, t1);

    return(VP_OK);
}