1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
|
/*
* vp_shade.c
*
* Routines to implement the Phong shading equation using a lookup-table.
*
* Copyright (c) 1994 The Board of Trustees of The Leland Stanford
* Junior University. All rights reserved.
*
* Permission to use, copy, modify and distribute this software and its
* documentation for any purpose is hereby granted without fee, provided
* that the above copyright notice and this permission notice appear in
* all copies of this software and that you do not sell the software.
* Commercial licensing is available by contacting the author.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND WITHOUT WARRANTY OF ANY KIND,
* EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
* WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
*
* Author:
* Phil Lacroute
* Computer Systems Laboratory
* Electrical Engineering Dept.
* Stanford University
*/
/*
* $Date: 1994/12/30 23:52:38 $
* $Revision: 1.27 $
*/
#include "vp_global.h"
/*
* Lookup Table Shading and Normal Vector Encoding
*
* The shader defined in this file implements the Phong shading equation
* (I = Ia + Id*(N.L) + Is*(N.H)^n) using lookup tables. To use this
* shader you must include a "normal" field in each voxel. This field
* is computed by preprocessing the volume to estimate a surface normal
* vector for each voxel (using the central-difference gradient operator)
* and then encoding the normal in an index (13 bits in this program).
* An index is stored in the normal field of each voxel. At rendering
* time the index is used to look up a color for the voxel in a table.
*
* There are many ways a normal vector can be encoded using the 13 bits of
* the index. A straight-forward method is to use 6 bits for the x component
* of the vector, 6 bits for the y component, and 1 bit to indicate the sign
* of the z component. Assuming that the vector is normalized the z
* component can be reconstructed from x and y. Unfortunately this method
* results in an uneven distribution of code points: the distance between
* exactly-representable vectors is much smaller near N = +z or -z than
* N = +x, -x, +y or -z (where x, y and z are the unit vectors). This
* can result in significant quantization error near the "equator", or more
* table storage than necessary near the "poles".
*
* The normal vector encoding scheme used here is derived from a recursive
* tesselation of a regular octahedron (an eight-sided solid with
* equilateral triangular faces). Consider subdividing each triangular
* face into four smaller equilateral triangles, and then subdividing those
* triangles recursively until a sufficiently large number of triangles
* have been generated. The representable normal vectors are the vectors
* connecting the center of the solid to the vertices of the triangles.
* The distribution of these vectors is not perfectly uniform (the density
* is lower at the "mid-latitudes"), but the variation is relatively small.
*
* Each normal vector is now assigned a unique index as follows. Let the
* origin be at the center of the solid, and the x, y and z axes each
* intersect a vertex of the original octahedron. Use one bit of the index
* to indicate the sign of the z component of the normal. Now project the
* subdivided triangle vertices onto the x-y plane. This forms a square
* grid of dots rotated 45 degrees relative to the x-y axes. Starting at
* (x=0, y=max), assign sequential integers to each normal vector projection,
* proceeding left-to-right and top-to-bottom. Finally, append the sign bit
* for the z component to the least-significant end of the integer to get
* the normal vector encoding.
*
* This scheme is useful because it is easy to compute the vector components
* from an index and conversely to find the closest index for a given vector,
* yet the distribution of representable vectors is pretty uniform.
*
* XXX better method is to rotate 45 degrees (M = [1 -1 ; 1 1]) and then
* assign points in scanline order; no lookup tables needed; implement this!
*
* The layout of the shading lookup table is as follows:
* float shade_table[MAX_NORMAL+1][materials][color_channels]
* where materials is the number of materials and color_channels is 1
* for grayscale intensities or 3 for RGB intensities (stored in R,G,B
* order).
*/
/* define normal index parameters; if you change these then you
must change VP_NORM_MAX in volpack.h */
#define NORM_13 /* use 13 bit normals */
#undef NORM_15 /* don't use 15 bit normals */
#ifdef NORM_13 /* parameters for 13 bit normals */
#define NORM_N 44 /* N parameter for normal computation */
#define NORM_BITS 13 /* number of bits to encode a normal:
(1+ceil(log2(2*(N*N+N+1)))) */
#define MAX_NORMAL 7923 /* maximum normal index */
#endif
#ifdef NORM_15 /* parameters for 15 bit normals */
#define NORM_N 90
#define NORM_BITS 15
#define MAX_NORMAL 16131
#endif
/* static lookup tables (computed only once, used for all vpContexts) */
static int NormalTablesInitialized = 0; /* set to 1 after initialization */
static short *NormalPy; /* NormalPy[py] = normal index for the normal
whose projection in the x-y plane is (0,py)
and whose z component is +
(py = -NORM_N to +NORM_N) */
static short NormalPyStorage[1+2*NORM_N]; /* storage for NormalPy */
static short *NormalXLimit; /* max abs(x) allowed for a given y */
static short NormalXLimitStorage[1+2*NORM_N]; /* storage for NormalXLimit */
static void InitNormalTables ANSI_ARGS((void));
/*
* InitNormalTables
*
* Initialize lookup tables for computing normal indices.
*/
static void
InitNormalTables()
{
int y, xcount, codepoint;
int sum;
double value;
/* initialize NormalPy */
xcount = 1;
codepoint = 2;
NormalPy = &NormalPyStorage[NORM_N];
NormalXLimit = &NormalXLimitStorage[NORM_N];
for (y = -NORM_N; y <= NORM_N; y++) {
NormalPy[y] = codepoint + (((xcount-1)/2) << 1);
codepoint += (xcount << 1);
NormalXLimit[y] = (xcount-1)/2;
if (y < 0)
xcount += 2;
else
xcount -= 2;
}
NormalTablesInitialized = 1;
}
/*
* vpNormalIndex
*
* Return the best normal index for the given normal vector.
*/
int
vpNormalIndex(nx, ny, nz)
double nx, ny, nz;
{
int n, x, y, xlimit;
double denom, denominv;
if (!NormalTablesInitialized)
InitNormalTables();
denom = (nx < 0) ? -nx : nx;
denom += (ny < 0) ? -ny : ny;
denom += (nz < 0) ? -nz : nz;
denominv = (double)NORM_N / denom;
x = (int)rint(nx * denominv);
y = (int)rint(ny * denominv);
/* clamp x */
xlimit = NormalXLimit[y];
if (x < 0) {
if (-x > xlimit)
x = -xlimit;
} else {
if (x > xlimit)
x = xlimit;
}
n = NormalPy[y] + (x << 1);
if (nz < 0)
n |= 1;
ASSERT(n >= 0 && n <= VP_NORM_MAX);
return(n);
}
/*
* vpNormal
*
* Compute normal vector components given a normal vector index.
*/
vpResult
vpNormal(n, nx, ny, nz)
int n; /* normal index */
double *nx, *ny, *nz; /* storage for result */
{
int py, px, pz, pxlimit2;
double pxd, pyd, pzd, plength;
if (!NormalTablesInitialized)
InitNormalTables();
for (py = -NORM_N; py <= NORM_N; py++) {
pxlimit2 = 2 * ((py<0) ? (NORM_N + py) : (NORM_N - py));
if (NormalPy[py] - pxlimit2 <= n &&
NormalPy[py] + pxlimit2 + 1 >= n) {
break;
}
}
if (py > NORM_N) {
return(VPERROR_BAD_VALUE);
} else {
px = (n - NormalPy[py]) >> 1;
pz = NORM_N;
if (px < 0)
pz += px;
else
pz -= px;
if (py < 0)
pz += py;
else
pz -= py;
if (n & 1)
pz = -pz;
pxd = (double)px;
pyd = (double)py;
pzd = (double)pz;
plength = 1. / sqrt(pxd*pxd+pyd*pyd+pzd*pzd);
*nx = pxd * plength;
*ny = pyd * plength;
*nz = pzd * plength;
}
return(VP_OK);
}
/*
* vpScanlineNormals
*
* Compute normals and/or gradients for a scanline of voxels.
*/
vpResult
vpScanlineNormals(vpc, length, scalar_data, scalar_minus_y,
scalar_plus_y, scalar_minus_z, scalar_plus_z,
voxel_data, scalar_field, grad_field, norm_field)
vpContext *vpc; /* context */
int length; /* number of scalars in scanline */
unsigned char *scalar_data; /* scanline of scalar data */
unsigned char *scalar_minus_y; /* adjacent scanline of scalar data (-y) */
unsigned char *scalar_plus_y; /* adjacent scanline of scalar data (+y) */
unsigned char *scalar_minus_z; /* adjacent scanline of scalar data (-z) */
unsigned char *scalar_plus_z; /* adjacent scanline of scalar data (+z) */
void *voxel_data; /* location to store first voxel */
int scalar_field; /* voxel field for scalar, or VP_SKIP_FIELD */
int grad_field; /* voxel field for gradient, or VP_SKIP_FIELD */
int norm_field; /* voxel field for normal, or VP_SKIP_FIELD */
{
int x; /* voxel index */
double grad_x; /* components of the gradient vector */
double grad_y;
double grad_z;
double twice_grad_mag; /* twice the magnitude of the gradient */
int grad; /* gradient magnitude */
int norm; /* normal index */
int edge; /* true if this scanline is on the edge
of the volume */
int voxel_size; /* size of a voxel in bytes */
int scalar_offset; /* byte offset for scalar in voxel */
int grad_offset; /* byte offset for gradient in voxel */
int norm_offset; /* byte offset for normal in voxel */
char *voxel; /* pointer to current voxel */
int retcode;
/* check for errors */
if ((retcode = VPCheckVoxelFields(vpc)) != VP_OK)
return(retcode);
if (scalar_field != VP_SKIP_FIELD) {
if (scalar_field < 0 || scalar_field >= vpc->num_voxel_fields)
return(VPSetError(vpc, VPERROR_BAD_VALUE));
if (vpc->field_size[scalar_field] != VP_SCALAR_SIZE)
return(VPSetError(vpc, VPERROR_BAD_VALUE));
scalar_offset = vpc->field_offset[scalar_field];
}
if (grad_field != VP_SKIP_FIELD) {
if (grad_field < 0 || grad_field >= vpc->num_voxel_fields)
return(VPSetError(vpc, VPERROR_BAD_VALUE));
if (vpc->field_size[grad_field] != VP_GRAD_SIZE)
return(VPSetError(vpc, VPERROR_BAD_VALUE));
grad_offset = vpc->field_offset[grad_field];
}
if (norm_field != VP_SKIP_FIELD) {
if (norm_field < 0 || norm_field >= vpc->num_voxel_fields)
return(VPSetError(vpc, VPERROR_BAD_VALUE));
if (vpc->field_size[norm_field] != VP_NORM_SIZE)
return(VPSetError(vpc, VPERROR_BAD_VALUE));
norm_offset = vpc->field_offset[norm_field];
}
voxel_size = vpc->raw_bytes_per_voxel;
/* compute the scanline */
voxel = voxel_data;
if (scalar_minus_y == NULL || scalar_plus_y == NULL ||
scalar_minus_z == NULL || scalar_plus_z == NULL) {
edge = 1;
} else {
edge = 0;
}
for (x = 0; x < length; x++) {
/* compute gradient and normal for voxel x and store */
if (edge || x == 0 || x == length-1) {
if (scalar_field != VP_SKIP_FIELD)
ByteField(voxel, scalar_offset) = scalar_data[x];
if (grad_field != VP_SKIP_FIELD)
ByteField(voxel, grad_offset) = 0;
if (norm_field != VP_SKIP_FIELD)
ShortField(voxel, norm_offset) = 0;
} else {
grad_x = (int)scalar_data[x+1] - (int)scalar_data[x-1];
grad_y = (int)scalar_plus_y[x] - (int)scalar_minus_y[x];
grad_z = (int)scalar_plus_z[x] - (int)scalar_minus_z[x];
twice_grad_mag = sqrt(grad_x*grad_x+grad_y*grad_y+grad_z*grad_z);
if (scalar_field != VP_SKIP_FIELD)
ByteField(voxel, scalar_offset) = scalar_data[x];
if (grad_field != VP_SKIP_FIELD) {
grad = (int)rint(0.5 * twice_grad_mag);
ASSERT(grad >= 0 && grad <= VP_GRAD_MAX);
ByteField(voxel, grad_offset) = grad;
}
if (norm_field != VP_SKIP_FIELD) {
if (twice_grad_mag < VP_EPS)
norm = 0;
else
norm = vpNormalIndex(grad_x / twice_grad_mag,
grad_y / twice_grad_mag,
grad_z / twice_grad_mag);
ShortField(voxel, norm_offset) = norm;
}
}
/* go on to next voxel */
voxel += voxel_size;
}
return(VP_OK);
}
/*
* vpVolumeNormals
*
* Compute normals and/or gradients for a volume. Result is stored
* in raw_voxels in the current context.
*/
vpResult
vpVolumeNormals(vpc, scalar_data, length, scalar_field, grad_field, norm_field)
vpContext *vpc; /* context */
unsigned char *scalar_data; /* 3D array of scalar data */
int length; /* number of scalars in scalar_data */
int scalar_field; /* voxel field for scalar, or VP_SKIP_FIELD */
int grad_field; /* voxel field for gradient, or VP_SKIP_FIELD */
int norm_field; /* voxel field for normal, or VP_SKIP_FIELD */
{
int xlen, ylen, zlen; /* volume dimensions */
int y, z; /* loop indices */
unsigned char *scalar; /* pointer to current scalar */
int scalar_ystride; /* stride to next scalar scanline */
int scalar_zstride; /* stride to next scalar slice */
char *voxel; /* pointer to current voxel */
int voxel_ystride; /* stride to next voxel scanline */
int voxel_zstride; /* stride to next voxel slice */
unsigned char *s_py, *s_my, *s_pz, *s_mz; /* ptrs to adjacent scans */
int retcode;
/* check for errors */
if ((retcode = VPCheckRawVolume(vpc)) != VP_OK)
return(retcode);
xlen = vpc->xlen;
ylen = vpc->ylen;
zlen = vpc->zlen;
if (xlen * ylen * zlen != length)
return(VPSetError(vpc, VPERROR_BAD_SIZE));
/* initialize */
scalar = scalar_data;
scalar_ystride = xlen;
scalar_zstride = xlen*ylen;
voxel = vpc->raw_voxels;
voxel_ystride = vpc->ystride;
voxel_zstride = vpc->zstride;
/* compute volume data */
for (z = 0; z < zlen; z++) {
ReportStatus(vpc, (double)z / (double)zlen);
for (y = 0; y < ylen; y++) {
s_my = (y == 0) ? NULL : scalar - scalar_ystride;
s_py = (y == ylen-1) ? NULL : scalar + scalar_ystride;
s_mz = (z == 0) ? NULL : scalar - scalar_zstride;
s_pz = (z == zlen-1) ? NULL : scalar + scalar_zstride;
retcode = vpScanlineNormals(vpc, xlen, scalar, s_my, s_py,
s_mz, s_pz, voxel, scalar_field,
grad_field, norm_field);
if (retcode != VP_OK)
return(retcode);
scalar += scalar_ystride;
voxel += voxel_ystride;
}
scalar += scalar_zstride - ylen*scalar_ystride;
voxel += voxel_zstride - ylen*voxel_ystride;
}
ReportStatus(vpc, 1.0);
return(VP_OK);
}
/*
* vpShadeTable
*
* Compute a shading lookup table for the current lighting and
* model matrix.
*/
vpResult
vpShadeTable(vpc)
vpContext *vpc;
{
int num_lights; /* number of enabled lights */
vpVector3 light_color[VP_MAX_LIGHTS]; /* light colors */
vpVector4 obj_light[VP_MAX_LIGHTS]; /* light_vector in object space */
vpVector4 obj_highlight[VP_MAX_LIGHTS]; /* halfway-vector */
vpVector4 obj_viewpoint; /* viewpoint in object coordinates */
vpMatrix4 a; /* linear system matrix */
double *rhs[VP_MAX_LIGHTS+1];/* right-hand-side/solution vectors */
int px, py, pz; /* code point coordinates (integers) */
double pxd, pyd, pzd; /* code point coordinates (doubles) */
double plength;
int pxlimit; /* maximum absolute value of px for this py */
double nx, ny, nz; /* normal vector components */
double n_dot_v_xy; /* normal_vector dot obj_viewpoint (x&y) */
double n_dot_v_z; /* normal_vector dot obj_viewpoint (z) */
double n_dot_v; /* normal_vector dot obj_viewpoint */
double n_dot_l_xy; /* normal_vector dot light_vector (x&y) */
double n_dot_l_z; /* normal_vector dot light_vector (z) */
double n_dot_l; /* normal_vector dot light_vector */
double n_dot_h_xy; /* normal_vector dot halfway_vector (x&y) */
double n_dot_h_z; /* normal_vector dot halfway_vector (z) */
double n_dot_h; /* normal_vector dot halfway_vector */
float r, g, b; /* intensities to store in shade table */
float *table_row; /* pointer to table row for current normal */
float *table; /* pointer to table entry */
float *shadow_table_row; /* pointer to table row for current normal */
float *shadow_table; /* pointer to shadow table entry */
int surface_side; /* EXT_SURFACE or INT_SURFACE */
int znegative; /* true iff nz is negative */
int light_both_sides; /* use two-sided lighting */
int reverse_surface_sides; /* reverse interior and exterior */
int color_channels; /* number of color channels */
int num_materials; /* number of materials */
int retcode;
double *matl_props; /* material properties */
int enable_shadows; /* true if shadows are enabled */
int shadow_light; /* light index for light casting shadows */
int clamp; /* true if table entries should be clamped */
int c, l, m;
#ifdef DEBUG
vpVector4 tmpv;
#endif
DECLARE_TIME(t0);
DECLARE_TIME(t1);
/* error checking */
if (vpc->shading_mode != LOOKUP_SHADER)
return(VP_OK);
if ((retcode = VPCheckShader(vpc)) != VP_OK)
return(retcode);
if ((retcode = VPCheckShadows(vpc)) != VP_OK)
return(retcode);
ASSERT(vpc->color_channels == 1 || vpc->color_channels == 3);
/* start timer */
GET_TIME(vpc, t0);
/* transform viewpoint vector and light vectors to object space */
vpSetVector4(obj_viewpoint, 0., 0., 1., 1.);
rhs[0] = obj_viewpoint;
num_lights = 0;
for (c = 0; c < VP_MAX_LIGHTS; c++) {
if (vpc->light_enable[c]) {
bcopy(vpc->light_color[c], light_color[num_lights],
sizeof(vpVector3));
bcopy(vpc->light_vector[c], obj_light[num_lights],
sizeof(vpVector4));
rhs[num_lights+1] = obj_light[num_lights];
num_lights++;
}
}
bcopy(vpc->transforms[VP_MODEL], a, sizeof(vpMatrix4));
retcode = vpSolveSystem4(a, rhs, num_lights+1);
if (retcode != VP_OK)
return(retcode);
#ifdef DEBUG
/* make sure the solver gave the right answer */
vpMatrixVectorMult4(tmpv, vpc->transforms[VP_MODEL], obj_viewpoint);
if (fabs(tmpv[0]) > VP_EPS || fabs(tmpv[1]) > VP_EPS ||
fabs(tmpv[2] - 1.) > VP_EPS || fabs(tmpv[3] - 1.) > VP_EPS) {
printf("\n");
printf("Modelview:\n");
printf(" %12.8f %12.8f %12.8f %12.8f\n",
vpc->transforms[VP_MODEL][0][0], vpc->transforms[VP_MODEL][0][1],
vpc->transforms[VP_MODEL][0][2], vpc->transforms[VP_MODEL][0][3]);
printf(" %12.8f %12.8f %12.8f %12.8f\n",
vpc->transforms[VP_MODEL][1][0], vpc->transforms[VP_MODEL][1][1],
vpc->transforms[VP_MODEL][1][2], vpc->transforms[VP_MODEL][1][3]);
printf(" %12.8f %12.8f %12.8f %12.8f\n",
vpc->transforms[VP_MODEL][2][0], vpc->transforms[VP_MODEL][2][1],
vpc->transforms[VP_MODEL][2][2], vpc->transforms[VP_MODEL][2][3]);
printf(" %12.8f %12.8f %12.8f %12.8f\n",
vpc->transforms[VP_MODEL][3][0], vpc->transforms[VP_MODEL][3][1],
vpc->transforms[VP_MODEL][3][2], vpc->transforms[VP_MODEL][3][3]);
VPBug("SolveSystem failed on viewpoint");
}
l = 0;
for (c = 0; c < VP_MAX_LIGHTS; c++) {
if (vpc->light_enable[c]) {
vpMatrixVectorMult4(tmpv, vpc->transforms[VP_MODEL], obj_light[l]);
if (fabs(tmpv[0] - vpc->light_vector[c][0]) > VP_EPS ||
fabs(tmpv[1] - vpc->light_vector[c][1]) > VP_EPS ||
fabs(tmpv[2] - vpc->light_vector[c][2]) > VP_EPS ||
fabs(tmpv[3] - vpc->light_vector[c][3]) > VP_EPS)
VPBug("SolveSystem failed on light %d\n", c);
l++;
}
}
#endif
/* compute highlight vectors */
for (l = 0; l < num_lights; l++) {
obj_highlight[l][0] = obj_light[l][0] + obj_viewpoint[0];
obj_highlight[l][1] = obj_light[l][1] + obj_viewpoint[1];
obj_highlight[l][2] = obj_light[l][2] + obj_viewpoint[2];
vpNormalize3(obj_highlight[l]);
}
/* initialize options */
light_both_sides = vpc->light_both_sides;
reverse_surface_sides = vpc->reverse_surface_sides;
color_channels = vpc->color_channels;
num_materials = vpc->num_materials;
table = vpc->shade_color_table;
enable_shadows = vpc->enable_shadows;
if (enable_shadows) {
shadow_table = vpc->shadow_color_table;
shadow_light = vpc->shadow_light_num - VP_LIGHT0;
bzero(shadow_table, vpc->shadow_color_table_size);
} else {
shadow_table = NULL;
shadow_light = -1;
}
clamp = vpc->clamp_shade_table;
/* store shade table entries for the zero-vector */
for (znegative = 0; znegative <= 1; znegative++) {
if (znegative) {
if (reverse_surface_sides)
surface_side = EXT_SURFACE;
else
surface_side = INT_SURFACE;
} else {
if (reverse_surface_sides)
surface_side = INT_SURFACE;
else
surface_side = EXT_SURFACE;
}
for (m = 0; m < num_materials; m++) {
matl_props = vpc->matl_props[m][surface_side];
*table++ = matl_props[MATL_AMB_R];
if (color_channels == 3) {
*table++ = matl_props[MATL_AMB_G];
*table++ = matl_props[MATL_AMB_B];
}
}
}
table_row = table;
if (enable_shadows) {
for (znegative = 0; znegative <= 1; znegative++) {
for (m = 0; m < num_materials; m++) {
*shadow_table++ = 0;
if (color_channels == 3) {
*shadow_table++ = 0;
*shadow_table++ = 0;
}
}
}
}
shadow_table_row = shadow_table;
/* compute the shade table entries for nonzero normals */
for (py = -NORM_N; py <= NORM_N; py++) {
pxlimit = (py < 0) ? (NORM_N + py) : (NORM_N - py);
pz = -1;
pxd = (double)(-pxlimit-1);
pyd = (double)py;
pzd = (double)(-1);
for (px = -pxlimit; px <= pxlimit; px++) {
/* compute normal vector components for this code point */
pxd += 1.0;
if (px <= 0) {
pz++;
pzd += 1.0;
} else {
pz--;
pzd -= 1.0;
}
plength = 1. / sqrt(pxd*pxd + pyd*pyd + pzd*pzd);
nx = pxd * plength;
ny = pyd * plength;
nz = pzd * plength;
/* compute n dot v (for determining surface side) */
n_dot_v_xy = nx*obj_viewpoint[0] + ny*obj_viewpoint[1];
n_dot_v_z = nz*obj_viewpoint[2];
/* store ambient light terms */
table = table_row;
for (znegative = 0; znegative <= 1; znegative++) {
if (znegative)
n_dot_v = n_dot_v_xy - n_dot_v_z;
else
n_dot_v = n_dot_v_xy + n_dot_v_z;
if (reverse_surface_sides)
n_dot_v = -n_dot_v;
if (n_dot_v >= 0)
surface_side = EXT_SURFACE;
else
surface_side = INT_SURFACE;
for (m = 0; m < num_materials; m++) {
matl_props = vpc->matl_props[m][surface_side];
*table++ = matl_props[MATL_AMB_R];
if (color_channels == 3) {
*table++ = matl_props[MATL_AMB_G];
*table++ = matl_props[MATL_AMB_B];
}
}
}
/* loop over lights */
for (l = 0; l < num_lights; l++) {
if (l == shadow_light)
table = shadow_table_row;
else
table = table_row;
/* compute n dot l and n dot h */
n_dot_l_xy = nx*obj_light[l][0] + ny*obj_light[l][1];
n_dot_l_z = nz*obj_light[l][2];
n_dot_h_xy = nx*obj_highlight[l][0] + ny*obj_highlight[l][1];
n_dot_h_z = nz*obj_highlight[l][2];
/* loop over the two signs for z */
for (znegative = 0; znegative <= 1; znegative++) {
if (znegative) {
n_dot_v = n_dot_v_xy - n_dot_v_z;
n_dot_l = n_dot_l_xy - n_dot_l_z;
n_dot_h = n_dot_h_xy - n_dot_h_z;
} else {
n_dot_v = n_dot_v_xy + n_dot_v_z;
n_dot_l = n_dot_l_xy + n_dot_l_z;
n_dot_h = n_dot_h_xy + n_dot_h_z;
}
if (reverse_surface_sides) {
n_dot_v = -n_dot_v;
n_dot_l = -n_dot_l;
n_dot_h = -n_dot_h;
}
if (n_dot_v >= 0)
surface_side = EXT_SURFACE;
else
surface_side = INT_SURFACE;
if (light_both_sides) {
n_dot_l = fabs(n_dot_l);
n_dot_h = fabs(n_dot_h);
} else if (surface_side == EXT_SURFACE) {
n_dot_l = MAX(n_dot_l, 0.0);
n_dot_h = MAX(n_dot_h, 0.0);
} else {
n_dot_l = MAX(-n_dot_l, 0.0);
n_dot_h = MAX(-n_dot_h, 0.0);
}
/* loop over material types */
for (m = 0; m < num_materials; m++) {
matl_props = vpc->matl_props[m][surface_side];
*table++ += light_color[l][0]*(matl_props[MATL_DIFF_R]*
n_dot_l + matl_props[MATL_SPEC_R]*
pow(n_dot_h, matl_props[MATL_SHINY]));
if (color_channels == 3) {
*table++ += light_color[l][1]*
(matl_props[MATL_DIFF_G]*
n_dot_l + matl_props[MATL_SPEC_G]*
pow(n_dot_h, matl_props[MATL_SHINY]));
*table++ += light_color[l][2]*
(matl_props[MATL_DIFF_B]*
n_dot_l + matl_props[MATL_SPEC_B]*
pow(n_dot_h, matl_props[MATL_SHINY]));
}
} /* for m */
} /* for znegative */
} /* for l */
/* clamp */
if (clamp) {
if (enable_shadows) {
table = table_row;
shadow_table = shadow_table_row;
for (znegative = 0; znegative <= 1; znegative++) {
for (m = 0; m < num_materials; m++) {
for (c = 0; c < color_channels; c++) {
if (*table > 255.)
*table = 255.;
if (*table + *shadow_table > 255.)
*shadow_table = 255. - *table;
shadow_table++;
table++;
}
}
}
} else {
table = table_row;
for (znegative = 0; znegative <= 1; znegative++) {
for (m = 0; m < num_materials; m++) {
for (c = 0; c < color_channels; c++) {
if (*table > 255.)
*table = 255.;
table++;
}
}
}
}
}
if (num_materials == 1) {
table_row += 2*color_channels;
} else {
if (color_channels == 1)
table_row += 2*num_materials;
else
table_row += 6*num_materials;
}
if (enable_shadows) {
if (num_materials == 1) {
shadow_table_row += 2*color_channels;
} else {
if (color_channels == 1)
shadow_table_row += 2*num_materials;
else
shadow_table_row += 6*num_materials;
}
}
} /* for px */
} /* for py */
/* stop timer */
GET_TIME(vpc, t1);
STORE_TIME(vpc, VPTIMER_SHADE, t0, t1);
return(VP_OK);
}
|