1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
|
/*
* vp_warpA.m4
*
* One-pass image warping routine for affine transformations.
*
* Copyright (c) 1994 The Board of Trustees of The Leland Stanford
* Junior University. All rights reserved.
*
* Permission to use, copy, modify and distribute this software and its
* documentation for any purpose is hereby granted without fee, provided
* that the above copyright notice and this permission notice appear in
* all copies of this software and that you do not sell the software.
* Commercial licensing is available by contacting the author.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND WITHOUT WARRANTY OF ANY KIND,
* EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
* WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
*
* Author:
* Phil Lacroute
* Computer Systems Laboratory
* Electrical Engineering Dept.
* Stanford University
*/
/*
* $Date: 1994/12/30 23:52:38 $
* $Revision: 1.21 $
*/
#include "vp_global.h"
dnl Description:
dnl This is an m4 source file which defines a C procedure to warp
dnl a 2D image according to an affine transformation. The macro
dnl definitions allow the procedure to be specialized for a particular
dnl output pixel type.
dnl
dnl To produce a C source file, run this file through m4 with the
dnl following m4 macros defined:
dnl
dnl FuncName name of the C function to produce
dnl IntPixelType intermediate image element type (GrayIntPixel
dnl or RGBIntPixel)
dnl BGRPixel 1 to store color pixel in BGR order,
dnl 0 otherwise
dnl ColorChannels number of channels for color (0, 1 or 3)
dnl OpacityChannels number of channels for opacity (0, 1)
dnl
dnl OR, define "SourceFile" to be a file name of the form
dnl vp_warpA????.c
dnl where the four wildcard characters (call them W, X, Y and Z)
dnl can have one of the following values:
dnl W: number of color channels in intermediate image ("1" or "3")
dnl X: number of color channels in the output image ("0", "1" or "3")
dnl Y: number of opacity channels in output image ("0" or "1")
dnl Z: "R" to store color pixel in reverse order (ABGR),
dnl "N" to store color pixel in normal order (RGBA)
ifdef(`SourceFile', `
define(FuncNameStr, `substr(SourceFile, 7, 5)')
define(ColorChannelsIn, `substr(SourceFile, 8, 1)')
define(ColorChannels, `substr(SourceFile, 9, 1)')
define(OpacityChannels, `substr(SourceFile, 10, 1)')
define(ReverseOrder, `substr(SourceFile, 11, 1)')
define(FuncName, `VPWarp'FuncNameStr())
ifelse(ColorChannelsIn, `1', `define(IntPixelType, GrayIntPixel)',
ColorChannelsIn, `3', `define(IntPixelType, RGBIntPixel)')
ifelse(ReverseOrder, `R', `define(BGRPixel, 1)', `define(BGRPixel, 0)')
')
dnl Macros defined below:
dnl DeclareAccumulator() declare a pixel accumulator
dnl ClearAccumulator() clear the pixel accumulator
dnl Accumulate1(wgt, ipixel) multiply ipixel by wgt and add to accumulator
dnl Accumulate4(wgt0, ipixel0, wgt1, ipixel1, wgt2, ipixel2, wgt3, ipixel3)
dnl multiply each pixel by corresponding weight
dnl and store in accumulator
dnl StoreAccumulator(dst) write the pixel accumulator to dst
dnl
dnl
dnl Definitions that depend on the number of color channels.
dnl
ifelse(ColorChannels, 0, `
define(`DeclareColorAccumulator', `')
define(`ClearColorAccumulator', `')
define(`ColorAccumulate1', `')
define(`ColorAccumulate4', `')
define(`StoreColorAccumulator', `')')
ifelse(ColorChannels, 1, `
define(`DeclareColorAccumulator', `float gray_acc; int gray_acc_int;')
define(`ClearColorAccumulator', `gray_acc = 0;')
define(`ColorAccumulate1', `gray_acc += ($1) * ($2.clrflt);')
define(`ColorAccumulate4', `
gray_acc = ($1) * ($2.clrflt) +
($3) * ($4.clrflt) +
($5) * ($6.clrflt) +
($7) * ($8.clrflt);')
define(`StoreColorAccumulator', `
gray_acc_int = gray_acc;
if (gray_acc_int > 255)
gray_acc_int = 255;
($1) = gray_acc_int;')')
ifelse(ColorChannels, 3, `
define(`DeclareColorAccumulator', `float r_acc, g_acc, b_acc;
int r_acc_int, g_acc_int, b_acc_int;')
define(`ClearColorAccumulator', `r_acc = g_acc = b_acc = 0;')
define(`ColorAccumulate1', `
r_acc += ($1) * ($2.rclrflt);
g_acc += ($1) * ($2.gclrflt);
b_acc += ($1) * ($2.bclrflt);')
define(`ColorAccumulate4', `
r_acc = ($1) * ($2.rclrflt) +
($3) * ($4.rclrflt) +
($5) * ($6.rclrflt) +
($7) * ($8.rclrflt);
g_acc = ($1) * ($2.gclrflt) +
($3) * ($4.gclrflt) +
($5) * ($6.gclrflt) +
($7) * ($8.gclrflt);
b_acc = ($1) * ($2.bclrflt) +
($3) * ($4.bclrflt) +
($5) * ($6.bclrflt) +
($7) * ($8.bclrflt);')
define(`StoreColorAccumulator', `
r_acc_int = r_acc;
if (r_acc_int > 255)
r_acc_int = 255;
($1) = r_acc_int;
g_acc_int = g_acc;
if (g_acc_int > 255)
g_acc_int = 255;
($2) = g_acc_int;
b_acc_int = b_acc;
if (b_acc_int > 255)
b_acc_int = 255;
($3) = b_acc_int;')')
dnl
dnl Definitions that depend on the number of opacity channels.
dnl
ifelse(OpacityChannels, 0, `
define(`DeclareOpacityAccumulator', `')
define(`ClearOpacityAccumulator', `')
define(`OpacityAccumulate1', `')
define(`OpacityAccumulate4', `')
define(`StoreOpacityAccumulator', `')')
ifelse(OpacityChannels, 1, `
define(`DeclareOpacityAccumulator', `float opc_acc; int opc_acc_int;')
define(`ClearOpacityAccumulator', `opc_acc = 0;')
define(`OpacityAccumulate1', `opc_acc += ($1) * ($2.opcflt);')
define(`OpacityAccumulate4', `
opc_acc = ($1) * ($2.opcflt) +
($3) * ($4.opcflt) +
($5) * ($6.opcflt) +
($7) * ($8.opcflt);')
define(`StoreOpacityAccumulator', `
opc_acc_int = opc_acc * (float)255.;
if (opc_acc_int > 255)
opc_acc_int = 255;
($1) = opc_acc_int;')')
dnl
dnl Other defintions.
dnl
define(`OutputChannels', ((ColorChannels) + (OpacityChannels)))
define(`DeclareAccumulator', `
DeclareColorAccumulator
DeclareOpacityAccumulator')
define(`ClearAccumulator', `
ClearColorAccumulator
ClearOpacityAccumulator')
define(`Accumulate1', `
ColorAccumulate1($1, $2)
OpacityAccumulate1($1, $2)')
define(`Accumulate4', `
ColorAccumulate4($1, $2, $3, $4, $5, $6, $7, $8)
OpacityAccumulate4($1, $2, $3, $4, $5, $6, $7, $8)')
ifelse(BGRPixel, 0, `
define(`StoreAccumulator', `
StoreColorAccumulator(($1)[0], ($1)[1], ($1)[2])
StoreOpacityAccumulator(($1)[ColorChannels])')', `
define(`StoreAccumulator', `
StoreOpacityAccumulator(($1)[0])
StoreColorAccumulator(($1)[OpacityChannels+2],
($1)[OpacityChannels+1], ($1)[OpacityChannels+0])')')
/* convert a float in the interval [0-1) to a 31-bit fixed point */
#define FLTFRAC_TO_FIX31(f) ((int)((f) * 2147483648.))
/* convert a 31-bit fixed point to a weight table index */
#define FIX31_TO_WGTIND(f) ((f) >> (31 - WARP_WEIGHT_INDEX_BITS))
extern float VPBilirpWeight[WARP_WEIGHT_ENTRIES][WARP_WEIGHT_ENTRIES][4];
/*
* FuncName
*
* One-pass warper. Transforms in_image to out_image according to
* the affine warp specified by warp_matrix. The resampling filter
* is a bilirp (suitable for upsampling only).
*/
void
FuncName (in_image, in_width, in_height, in_bytes_per_scan,
out_image, out_width, out_height, out_bytes_per_scan,
warp_matrix)
IntPixelType *in_image; /* input image data */
int in_width; /* size of input image */
int in_height;
int in_bytes_per_scan; /* bytes per scanline in input image */
char *out_image; /* output image data */
int out_width; /* size of output image */
int out_height;
int out_bytes_per_scan; /* bytes per scanline in output image */
vpMatrix3 warp_matrix; /* [ outx ] [ inx ] */
/* [ outy ] = warp_matrix * [ iny ] */
/* [ 1 ] [ 1 ] */
{
Trapezoid full_overlap[9]; /* description of the area of overlap
of output image (shrunk by the size
of the filter kernel) with input image */
Trapezoid part_overlap[9]; /* description of the area of overlap
of output image (unlarged by the size
of the filter kernel) with input image */
int region; /* index into full/part_overlap */
char *out_ptr; /* pointer to current pixel of output image */
int out_scan_y; /* coordinate of current output scanline */
int scans_to_next_vertex; /* number of scans left to process before
the next vertex is reached */
IntPixelType *in_ptr; /* pointer to current pixel of input image */
double x_lft_full, x_rgt_full; /* intersection of scan with full_overlap */
double x_lft_part, x_rgt_part; /* intersection of scan with part_overlap */
int no_full_pixels; /* true if full_overlap is empty for scan */
double in_x, in_y; /* exact coordinates in the input image of
the current output image pixel */
int in_x_int, in_y_int; /* coordinates of the nearest input image
pixel to the upper-left of the current
output image pixel */
int xfrac, yfrac; /* in_x - in_x_int and in_y - in_y_int,
stored as a fixed-point number with 31 bits
of fraction */
int xfrac_incr, yfrac_incr; /* increments to xfrac and yfrac to give
the fractions for the next output image
pixel in the current scan */
double in_x_incr, in_y_incr;/* increments to in_x and in_y to give the
input image coordinates of the next
output image pixel in the current scan
(equal to dx_in/dx_out and dy_in/dx_out) */
int in_x_incr_int, in_y_incr_int; /* integer part of in_x/y_incr */
int in_x_incr_dlt, in_y_incr_dlt; /* sign of in_x/y_incr */
float *wptr; /* pointer into weight table */
int lft_zero_cnt; /* # zero pixels on left edge of scan */
int lft_edge_cnt; /* # pixels on left w/ part filter overlap */
int full_cnt; /* # pixels w/ full filter overlap */
int rgt_edge_cnt; /* # pixels on rgt w/ part filter overlap */
int rgt_zero_cnt; /* # zero pixels on right edge of scan */
int x; /* pixel index */
DeclareAccumulator /* pixel accumulator */
double denom;
int c;
#ifdef DEBUG
{
int y;
for (y = 0; y < out_height; y++) {
out_ptr = out_image + y*out_bytes_per_scan;
for (x = 0; x < out_width; x++) {
for (c = 0; c < OutputChannels; c++)
*out_ptr++ = 255;
}
}
}
#endif
/* initialize tables */
VPComputeWarpTables();
/* compute the intersection of the input image and the output image */
/* filter width = 2.0 in input image space (triangle filter) */
VPAffineImageOverlap(in_width, in_height, out_width, out_height,
warp_matrix, 2., full_overlap, part_overlap);
/* compute the output image */
out_ptr = out_image;
out_scan_y = 0;
denom = 1. / (warp_matrix[0][0] * warp_matrix[1][1] -
warp_matrix[0][1] * warp_matrix[1][0]);
in_x_incr = warp_matrix[1][1]*denom;
in_y_incr = -warp_matrix[1][0]*denom;
if (in_x_incr < 0) {
in_x_incr_int = (int)ceil(in_x_incr);
in_x_incr_dlt = -1;
} else {
in_x_incr_int = (int)floor(in_x_incr);
in_x_incr_dlt = 1;
}
if (in_y_incr < 0) {
in_y_incr_int = (int)ceil(in_y_incr);
in_y_incr_dlt = -1;
} else {
in_y_incr_int = (int)floor(in_y_incr);
in_y_incr_dlt = 1;
}
xfrac_incr = FLTFRAC_TO_FIX31(in_x_incr - in_x_incr_int);
yfrac_incr = FLTFRAC_TO_FIX31(in_y_incr - in_y_incr_int);
for (region = 0; region < 9; region++) {
/* check for empty region */
if (part_overlap[region].miny >= out_height) {
break;
}
/* check if this region of the output image is unaffected by
the input image */
if (part_overlap[region].x_top_lft >
part_overlap[region].x_top_rgt) {
c = (part_overlap[region].maxy - part_overlap[region].miny + 1) *
out_bytes_per_scan;
bzero(out_ptr, c);
out_ptr += c;
out_scan_y += part_overlap[region].maxy -
part_overlap[region].miny + 1;
continue;
}
/* process scanlines of this region */
scans_to_next_vertex = part_overlap[region].maxy -
part_overlap[region].miny + 1;
x_lft_full = full_overlap[region].x_top_lft;
x_rgt_full = full_overlap[region].x_top_rgt;
x_lft_part = part_overlap[region].x_top_lft;
x_rgt_part = part_overlap[region].x_top_rgt;
if (x_lft_full > x_rgt_full)
no_full_pixels = 1;
else
no_full_pixels = 0;
ASSERT(scans_to_next_vertex > 0);
ASSERT(out_scan_y == part_overlap[region].miny);
while (scans_to_next_vertex > 0) {
/* compute the portions of the scanline which are zero
and which intersect the full and partially-full regions */
lft_zero_cnt = (int)floor(x_lft_part);
if (lft_zero_cnt < 0)
lft_zero_cnt = 0;
else if (lft_zero_cnt > out_width)
lft_zero_cnt = out_width;
if (no_full_pixels) {
lft_edge_cnt = (int)ceil(x_rgt_part);
if (lft_edge_cnt < 0)
lft_edge_cnt = 0;
else if (lft_edge_cnt > out_width)
lft_edge_cnt = out_width;
lft_edge_cnt -= lft_zero_cnt;
if (lft_edge_cnt < 0)
lft_edge_cnt = 0;
full_cnt = 0;
rgt_edge_cnt = 0;
rgt_zero_cnt = out_width - lft_zero_cnt - lft_edge_cnt;
} else {
lft_edge_cnt = (int)ceil(x_lft_full);
if (lft_edge_cnt < 0)
lft_edge_cnt = 0;
else if (lft_edge_cnt > out_width)
lft_edge_cnt = out_width;
lft_edge_cnt -= lft_zero_cnt;
if (lft_edge_cnt < 0)
lft_edge_cnt = 0;
full_cnt = (int)floor(x_rgt_full);
if (full_cnt < 0)
full_cnt = 0;
else if (full_cnt > out_width)
full_cnt = out_width;
full_cnt -= lft_edge_cnt + lft_zero_cnt;
if (full_cnt < 0)
full_cnt = 0;
rgt_edge_cnt = (int)ceil(x_rgt_part);
if (rgt_edge_cnt < 0)
rgt_edge_cnt = 0;
else if (rgt_edge_cnt > out_width)
rgt_edge_cnt = out_width;
rgt_edge_cnt -= full_cnt + lft_edge_cnt + lft_zero_cnt;
if (rgt_edge_cnt < 0)
rgt_edge_cnt = 0;
rgt_zero_cnt = out_width - lft_zero_cnt - lft_edge_cnt -
full_cnt - rgt_edge_cnt;
}
/* reverse map the first left-edge output pixel coordinate into
the input image coordinate system */
in_x = ((lft_zero_cnt - warp_matrix[0][2]) * warp_matrix[1][1] -
(out_scan_y - warp_matrix[1][2])*warp_matrix[0][1])*denom;
in_y = (-(lft_zero_cnt - warp_matrix[0][2]) * warp_matrix[1][0] +
(out_scan_y - warp_matrix[1][2])*warp_matrix[0][0])*denom;
in_x_int = (int)floor(in_x);
in_y_int = (int)floor(in_y);
in_ptr = (IntPixelType *)(((char *)in_image + in_y_int *
in_bytes_per_scan)) + in_x_int;
/* compute the weight lookup table indices and increments */
xfrac = FLTFRAC_TO_FIX31(in_x - in_x_int);
yfrac = FLTFRAC_TO_FIX31(in_y - in_y_int);
/* zero out unaffected pixels on left edge of scan */
if (lft_zero_cnt > 0) {
bzero(out_ptr, lft_zero_cnt * OutputChannels);
out_ptr += lft_zero_cnt * OutputChannels;
}
/* process left edge case pixels */
for (x = lft_zero_cnt; x < lft_zero_cnt + lft_edge_cnt; x++) {
wptr = VPBilirpWeight[FIX31_TO_WGTIND(yfrac)]
[FIX31_TO_WGTIND(xfrac)];
ClearAccumulator();
if (in_x_int >= 0 && in_x_int < in_width) {
if (in_y_int >= 0 && in_y_int < in_height) {
Accumulate1(wptr[0], in_ptr[0]);
}
if (in_y_int+1 >= 0 && in_y_int+1 < in_height) {
Accumulate1(wptr[2], in_ptr[in_width]);
}
}
if (in_x_int+1 >= 0 && in_x_int+1 < in_width) {
if (in_y_int >= 0 && in_y_int < in_height) {
Accumulate1(wptr[1], in_ptr[1]);
}
if (in_y_int+1 >= 0 && in_y_int+1 < in_height) {
Accumulate1(wptr[3], in_ptr[in_width + 1]);
}
}
StoreAccumulator(out_ptr);
out_ptr += OutputChannels;
xfrac += xfrac_incr;
yfrac += yfrac_incr;
if (xfrac < 0) {
xfrac &= 0x7fffffff;
in_x_int += in_x_incr_int + in_x_incr_dlt;
in_ptr += in_x_incr_int + in_x_incr_dlt;
} else {
in_x_int += in_x_incr_int;
in_ptr += in_x_incr_int;
}
if (yfrac < 0) {
yfrac &= 0x7fffffff;
in_y_int += in_y_incr_int + in_y_incr_dlt;
in_ptr += in_width * (in_y_incr_int + in_y_incr_dlt);
} else {
in_y_int += in_y_incr_int;
in_ptr += in_width * in_y_incr_int;
}
}
/* process output pixels affected by four input pixels */
for (x = lft_zero_cnt + lft_edge_cnt;
x < lft_zero_cnt + lft_edge_cnt + full_cnt; x++) {
ASSERT(in_x_int >= 0 && in_x_int < in_width-1);
ASSERT(in_y_int >= 0 && in_y_int < in_height-1);
ASSERT((IntPixelType *)(((char *)in_image + in_y_int *
in_bytes_per_scan)) + in_x_int == in_ptr);
wptr = VPBilirpWeight[FIX31_TO_WGTIND(yfrac)]
[FIX31_TO_WGTIND(xfrac)];
Accumulate4(wptr[0], in_ptr[0], wptr[2], in_ptr[in_width],
wptr[1], in_ptr[1], wptr[3], in_ptr[in_width+1]);
StoreAccumulator(out_ptr);
out_ptr += OutputChannels;
xfrac += xfrac_incr;
yfrac += yfrac_incr;
if (xfrac < 0) {
xfrac &= 0x7fffffff;
in_x_int += in_x_incr_int + in_x_incr_dlt;
in_ptr += in_x_incr_int + in_x_incr_dlt;
} else {
in_x_int += in_x_incr_int;
in_ptr += in_x_incr_int;
}
if (yfrac < 0) {
yfrac &= 0x7fffffff;
in_y_int += in_y_incr_int + in_y_incr_dlt;
in_ptr += in_width * (in_y_incr_int + in_y_incr_dlt);
} else {
in_y_int += in_y_incr_int;
in_ptr += in_width * in_y_incr_int;
}
}
/* process right edge case pixels */
for (x = lft_zero_cnt + lft_edge_cnt + full_cnt;
x < lft_zero_cnt + lft_edge_cnt + full_cnt + rgt_edge_cnt;
x++) {
wptr = VPBilirpWeight[FIX31_TO_WGTIND(yfrac)]
[FIX31_TO_WGTIND(xfrac)];
ClearAccumulator();
if (in_x_int >= 0 && in_x_int < in_width) {
if (in_y_int >= 0 && in_y_int < in_height) {
Accumulate1(wptr[0], in_ptr[0]);
}
if (in_y_int+1 >= 0 && in_y_int+1 < in_height) {
Accumulate1(wptr[2], in_ptr[in_width]);
}
}
if (in_x_int+1 >= 0 && in_x_int+1 < in_width) {
if (in_y_int >= 0 && in_y_int < in_height) {
Accumulate1(wptr[1], in_ptr[1]);
}
if (in_y_int+1 >= 0 && in_y_int+1 < in_height) {
Accumulate1(wptr[3], in_ptr[in_width + 1]);
}
}
StoreAccumulator(out_ptr);
out_ptr += OutputChannels;
xfrac += xfrac_incr;
yfrac += yfrac_incr;
if (xfrac < 0) {
xfrac &= 0x7fffffff;
in_x_int += in_x_incr_int + in_x_incr_dlt;
in_ptr += in_x_incr_int + in_x_incr_dlt;
} else {
in_x_int += in_x_incr_int;
in_ptr += in_x_incr_int;
}
if (yfrac < 0) {
yfrac &= 0x7fffffff;
in_y_int += in_y_incr_int + in_y_incr_dlt;
in_ptr += in_width * (in_y_incr_int + in_y_incr_dlt);
} else {
in_y_int += in_y_incr_int;
in_ptr += in_width * in_y_incr_int;
}
}
/* zero out unaffected pixels on right edge of scan */
if (rgt_zero_cnt > 0) {
bzero(out_ptr, rgt_zero_cnt * OutputChannels);
out_ptr += rgt_zero_cnt * OutputChannels;
}
/* go on to next scan */
scans_to_next_vertex--;
out_scan_y++;
out_ptr += out_bytes_per_scan - out_width * OutputChannels;
x_lft_full += full_overlap[region].x_incr_lft;
x_rgt_full += full_overlap[region].x_incr_rgt;
x_lft_part += part_overlap[region].x_incr_lft;
x_rgt_part += part_overlap[region].x_incr_rgt;
} /* next scanline in region */
} /* next region */
ASSERT(out_scan_y == out_height);
}
|