1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
|
/*
* classifyvolume.c
*
* Create a classified volume from the brainsmall data set.
*
* Copyright (c) 1994 The Board of Trustees of The Leland Stanford
* Junior University. All rights reserved.
*
* Permission to use, copy, modify and distribute this software and its
* documentation for any purpose is hereby granted without fee, provided
* that the above copyright notice and this permission notice appear in
* all copies of this software and that you do not sell the software.
* Commercial licensing is available by contacting the author.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND WITHOUT WARRANTY OF ANY KIND,
* EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
* WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
*
* Author:
* Phil Lacroute
* Computer Systems Laboratory
* Electrical Engineering Dept.
* Stanford University
*/
/*
* $Date: 1994/12/31 19:53:03 $
* $Revision: 1.5 $
*/
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <fcntl.h>
#include "volume.h"
int
main(int argc, char **argv)
{
vpContext *vpc; /* rendering context */
int volume_fd; /* file descriptor for volume (input) */
int octree_fd; /* file descriptor for octree (input) */
int density_fd; /* file descriptor for raw volume data (input) */
int output_fd; /* file descriptor for classified volume (output) */
int use_rawdata; /* if true, use raw data instead of volume */
int use_octree; /* if true, use octree with the volume */
unsigned char *density; /* buffer for density data */
unsigned density_size;/* size of density data */
float density_ramp[DENSITY_MAX+1]; /* opacity as a function of density */
float gradient_ramp[GRADIENT_MAX+1];/* opacity as a function
of gradient magnitude */
/* check command-line arguments */
use_octree = 0;
use_rawdata = 0;
if (argc > 1) {
if (!strcmp(argv[1], "-octree"))
use_octree = 1;
else if (!strcmp(argv[1], "-rawdata"))
use_rawdata = 1;
else {
fprintf(stderr, "Usage: %s [-octree | -rawdata]\n", argv[0]);
exit(1);
}
}
/* create a context */
vpc = vpCreateContext();
/* load input data: either raw data, or an unclassified volume with no
octree, or an unclassified volume with an octree */
if (use_rawdata) {
/* describe the layout of the volume */
vpSetVolumeSize(vpc, BRAIN_XLEN, BRAIN_YLEN, BRAIN_ZLEN);
vpSetVoxelSize(vpc, BYTES_PER_VOXEL, VOXEL_FIELDS,
SHADE_FIELDS, CLSFY_FIELDS);
vpSetVoxelField(vpc, NORMAL_FIELD, NORMAL_SIZE, NORMAL_OFFSET,
NORMAL_MAX);
vpSetVoxelField(vpc, DENSITY_FIELD, DENSITY_SIZE, DENSITY_OFFSET,
DENSITY_MAX);
vpSetVoxelField(vpc, GRADIENT_FIELD, GRADIENT_SIZE, GRADIENT_OFFSET,
GRADIENT_MAX);
/* allocate space for the raw data */
density_size = BRAIN_XLEN * BRAIN_YLEN * BRAIN_ZLEN;
density = malloc(density_size);
if (density == NULL) {
fprintf(stderr, "out of memory\n");
exit(1);
}
/* load the raw data */
if ((density_fd = open(BRAIN_FILE, 0)) < 0) {
perror("open");
fprintf(stderr, "could not open %s\n", BRAIN_FILE);
exit(1);
}
if (lseek(density_fd, BRAIN_HEADER, 0) < 0) {
perror("seek");
fprintf(stderr, "could not read data from %s\n", BRAIN_FILE);
exit(1);
}
if (read(density_fd, density, density_size) != density_size) {
perror("read");
fprintf(stderr, "could not read data from %s\n", BRAIN_FILE);
exit(1);
}
close(density_fd);
} else {
/* load the unclassified volume data */
if ((volume_fd = open(VOLUME_FILE, 0)) < 0) {
perror("open");
fprintf(stderr, "could not open %s\n", VOLUME_FILE);
exit(1);
}
if (vpLoadRawVolume(vpc, volume_fd) != VP_OK) {
fprintf(stderr, "VolPack error: %s\n",
vpGetErrorString(vpGetError(vpc)));
fprintf(stderr, "could not load the volume from file %s\n",
VOLUME_FILE);
exit(1);
}
close(volume_fd);
}
/* set the classification function */
vpRamp(density_ramp, sizeof(float), DENSITY_RAMP_POINTS, DensityRampX,
DensityRampY);
vpSetClassifierTable(vpc, DENSITY_PARAM, DENSITY_FIELD, density_ramp,
sizeof(density_ramp));
vpRamp(gradient_ramp, sizeof(float), GRADIENT_RAMP_POINTS, GradientRampX,
GradientRampY);
vpSetClassifierTable(vpc, GRADIENT_PARAM, GRADIENT_FIELD,
gradient_ramp, sizeof(gradient_ramp));
vpSetd(vpc, VP_MIN_VOXEL_OPACITY, 0.05);
/* load the octree */
if (use_octree) {
/* load the octree */
if ((octree_fd = open(OCTREE_FILE, 0)) < 0) {
perror("open");
fprintf(stderr, "could not open %s\n", OCTREE_FILE);
exit(1);
}
if (vpLoadMinMaxOctree(vpc, octree_fd) != VP_OK) {
fprintf(stderr, "VolPack error: %s\n",
vpGetErrorString(vpGetError(vpc)));
fprintf(stderr, "could not load the octree from file %s\n",
OCTREE_FILE);
exit(1);
}
close(octree_fd);
}
/* classify */
if (use_rawdata) {
if (vpClassifyScalars(vpc, density, density_size, DENSITY_FIELD,
GRADIENT_FIELD, NORMAL_FIELD) != VP_OK) {
fprintf(stderr, "VolPack error: %s\n",
vpGetErrorString(vpGetError(vpc)));
exit(1);
}
} else {
if (vpClassifyVolume(vpc) != VP_OK) {
fprintf(stderr, "VolPack error: %s\n",
vpGetErrorString(vpGetError(vpc)));
exit(1);
}
}
/* store the classified volume */
if ((output_fd = creat(CLVOLUME_FILE, 0644)) < 0) {
perror("open");
fprintf(stderr, "could not open %s\n", CLVOLUME_FILE);
exit(1);
}
if (vpStoreClassifiedVolume(vpc, output_fd) != VP_OK) {
fprintf(stderr, "VolPack error: %s\n",
vpGetErrorString(vpGetError(vpc)));
exit(1);
}
close(output_fd);
return(0);
}
|