1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
|
/*
* vp_renderB.c
*
* Brute-force shear-warp volume rendering algorithm.
*
* Copyright (c) 1994 The Board of Trustees of The Leland Stanford
* Junior University. All rights reserved.
*
* Permission to use, copy, modify and distribute this software and its
* documentation for any purpose is hereby granted without fee, provided
* that the above copyright notice and this permission notice appear in
* all copies of this software and that you do not sell the software.
* Commercial licensing is available by contacting the author.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND WITHOUT WARRANTY OF ANY KIND,
* EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
* WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
*
* Author:
* Phil Lacroute
* Computer Systems Laboratory
* Electrical Engineering Dept.
* Stanford University
*/
/*
* $Date: 1994/12/30 23:52:38 $
* $Revision: 1.28 $
*/
#include "vp_global.h"
static void AffineBruteForceRender ANSI_ARGS((vpContext *vpc));
static void ClassifySlice ANSI_ARGS((vpContext *vpc, int slicenum,
float *opc_slice));
static void ShadeSlice ANSI_ARGS((vpContext *vpc, int slicenum,
float *clr_slice));
static void ScaleColors ANSI_ARGS((double scale, float *clr_slice,
int width, int height, int color_channels));
static void AlphaScaleColors ANSI_ARGS((float *opc_slice, float *clr_slice,
int width, int height, int color_channels));
static void DepthCueSlice ANSI_ARGS((vpContext *vpc, float *clr_slice,
int width, int height, int color_channels, double depth_00k,
double depth_di, double depth_dj));
static void TranslateSlice ANSI_ARGS((float *opc_slice, float *clr_slice,
int width, int height, double WgtTL_d, double WgtBL_d, double WgtTR_d,
double WgtBR_d, int color_channels, float *resamp_opc_slice,
float *resmp_clr_slice));
static void CompositeSlice ANSI_ARGS((float *resamp_opc, float *resamp_clr,
int width, int height, int color_channels, void *int_image_ptr,
int int_image_width, double min_opacity));
static void AffineBruteForceWarp ANSI_ARGS((vpContext *vpc));
/*
* vpBruteForceRender
*
* Render an unclassified volume using the basic shear-warp algorithm
* without any optimizations (no spatial data structure is used and
* coherence is ignored). Use this routine as a standard for
* correctness checking.
*/
vpResult
vpBruteForceRender(vpc)
vpContext *vpc;
{
int retcode;
/* check for errors and initialize */
if ((retcode = VPCheckRawVolume(vpc)) != VP_OK)
return(retcode);
if ((retcode = VPCheckClassifier(vpc)) != VP_OK)
return(retcode);
if ((retcode = VPCheckShader(vpc)) != VP_OK)
return(retcode);
if ((retcode = VPCheckImage(vpc)) != VP_OK)
return(retcode);
if ((retcode = VPFactorView(vpc)) != VP_OK)
return(retcode);
/* render */
if (vpc->affine_view)
AffineBruteForceRender(vpc);
else
return(VPSetError(vpc, VPERROR_BAD_OPTION));
return(VP_OK);
}
/*
* AffineBruteForceRender
*
* Render an unclassified volume using the brute-force shear-warp
* algorithm for an affine view transformation.
*/
static void
AffineBruteForceRender(vpc)
vpContext *vpc;
{
int icount; /* voxels per voxel scanline */
int jcount; /* voxel scanlines per voxel slice */
int kcount; /* voxel slices in the volume */
int k; /* voxel slice index */
int kstart, kstop; /* values of k for first and last slices */
int kincr; /* value to add to k to get to the next slice
(either 1 or -1) */
float slice_u, slice_v; /* sheared object space coordinates of the
top-left corner of the current constant-k
slice of the volume data */
int slice_u_int; /* integer part of slice_u and slice_v */
int slice_v_int;
float slice_u_frac; /* fractional part of slice_u and slice_v */
float slice_v_frac;
int slice_start_index; /* index of top-left int. image pixel */
float WgtTL, WgtBL, /* weights in the range 0..1 which give the */
WgtTR, WgtBR; /* fractional contribution of the */
/* neighboring voxels to the current */
/* intermediate image pixel */
int color_channels; /* number of color channels to compute */
float *opc_slice; /* opacities after correction for viewpoint */
float *resamp_opc_slice; /* opacities after resampling */
float *clr_slice; /* colors for current voxel slice */
float *resamp_clr_slice; /* colors after resampling */
#ifdef FAST_DEPTH_CUEING
float slice_depth_cueing; /* depth cueing factor for current slice */
float slice_dc_ratio; /* multiplier to get depth cueing factor
for the next slice */
#endif
void *intim; /* intermediate image pointer */
Debug((vpc, VPDEBUG_RENDER, "Algorithm: affine brute force\n"));
/* find size of volume */
switch (vpc->best_view_axis) {
case VP_X_AXIS:
icount = vpc->ylen;
jcount = vpc->zlen;
kcount = vpc->xlen;
break;
case VP_Y_AXIS:
icount = vpc->zlen;
jcount = vpc->xlen;
kcount = vpc->ylen;
break;
case VP_Z_AXIS:
icount = vpc->xlen;
jcount = vpc->ylen;
kcount = vpc->zlen;
break;
default:
VPBug("invalid viewing axis in AffineBruteForceRender");
}
/* initialize intermediate image */
color_channels = vpc->color_channels;
vpc->pad_int_to_maxwidth = 0;
if (color_channels == 1) {
bzero(vpc->int_image.gray_intim, vpc->intermediate_width *
vpc->intermediate_height * sizeof(GrayIntPixel));
} else {
ASSERT(color_channels == 3);
bzero(vpc->int_image.rgb_intim, vpc->intermediate_width *
vpc->intermediate_height * sizeof(RGBIntPixel));
}
/* allocate memory for shaded and resampled voxel slices */
Alloc(vpc, opc_slice, float *, icount*jcount*sizeof(float), "opc_slice");
Alloc(vpc, resamp_opc_slice, float *, (icount+1)*(jcount+1)*sizeof(float),
"resamp_opc_slice");
Alloc(vpc, clr_slice, float *, color_channels*icount*jcount*sizeof(float),
"clr_slice");
Alloc(vpc, resamp_clr_slice, float *,
color_channels*(icount+1)*(jcount+1)*sizeof(float),
"resamp_clr_slice");
#ifdef FAST_DEPTH_CUEING
/* initialize depth cueing */
if (vpc->dc_enable) {
slice_dc_ratio = VPSliceDepthCueRatio(vpc);
slice_depth_cueing = 1.;
}
#endif
/* compute outer loop bounds */
if (vpc->reverse_slice_order) {
kstart = kcount-1;
kstop = -1;
kincr = -1;
} else {
kstart = 0;
kincr = 1;
kstop = kcount;
}
/* loop over slices of the voxel data in front-to-back order */
for (k = kstart; k != kstop; k += kincr) {
ReportStatus(vpc, (double)(k - kstart) / (double)(kstop - kstart));
/* compute coordinates of top-left corner of slice in
sheared object space */
slice_u = vpc->shear_i * k + vpc->trans_i;
slice_v = vpc->shear_j * k + vpc->trans_j;
slice_u_int = (int)ceil(slice_u) - 1;
slice_v_int = (int)ceil(slice_v) - 1;
/* compute resampling weights for this slice */
slice_u_frac = slice_u - slice_u_int;
slice_v_frac = slice_v - slice_v_int;
WgtTL = slice_u_frac * slice_v_frac;
WgtBL = slice_u_frac * ((float)1. - slice_v_frac);
WgtTR = ((float)1. - slice_u_frac) * slice_v_frac;
WgtBR = ((float)1. - slice_u_frac) * ((float)1. - slice_v_frac);
/* classify the slice of voxels */
ClassifySlice(vpc, k, opc_slice);
/* shade the slice of voxels */
ShadeSlice(vpc, k, clr_slice);
/* perform depth cueing on the slice */
if (vpc->dc_enable) {
#ifdef FAST_DEPTH_CUEING
ScaleColors(slice_depth_cueing, clr_slice, icount, jcount,
color_channels);
slice_depth_cueing *= slice_dc_ratio;
#else
DepthCueSlice(vpc, clr_slice, icount, jcount, color_channels,
vpc->depth_000 + k*vpc->depth_dk,
vpc->depth_di, vpc->depth_dj);
#endif
}
/* weight the voxels colors by the voxel opacities */
AlphaScaleColors(opc_slice, clr_slice, icount, jcount, color_channels);
/* resample the slice of voxels */
TranslateSlice(opc_slice, clr_slice, icount, jcount,
WgtTL, WgtBL, WgtTR, WgtBR, color_channels,
resamp_opc_slice, resamp_clr_slice);
/* composite the slice of resampled voxels */
slice_start_index = slice_u_int + slice_v_int*vpc->intermediate_width;
if (color_channels == 1)
intim = &vpc->int_image.gray_intim[slice_start_index];
else
intim = &vpc->int_image.rgb_intim[slice_start_index];
CompositeSlice(resamp_opc_slice, resamp_clr_slice, icount+1, jcount+1,
color_channels, intim, vpc->intermediate_width,
vpc->min_opacity);
}
ReportStatus(vpc, 1.0);
#ifdef FAST_DEPTH_CUEING
/* depth cue the intermediate image */
if (vpc->dc_enable)
VPDepthCueIntImage(vpc, vpc->reverse_slice_order ? kcount-1 : 0);
#endif
/* warp the intermediate image into the final image */
AffineBruteForceWarp(vpc);
/* clean up */
Dealloc(vpc, opc_slice);
Dealloc(vpc, resamp_opc_slice);
Dealloc(vpc, clr_slice);
Dealloc(vpc, resamp_clr_slice);
}
/*
* ClassifySlice
*
* Classify a slice of voxels.
*/
static void
ClassifySlice(vpc, slicenum, opc_slice)
vpContext *vpc;
int slicenum;
float *opc_slice;
{
switch (vpc->best_view_axis) {
case VP_X_AXIS:
VPClassifyBlock(vpc, 1, slicenum, 0, 0, slicenum, vpc->ylen-1,
vpc->zlen-1, opc_slice, 0, sizeof(float),
vpc->ylen*sizeof(float));
break;
case VP_Y_AXIS:
VPClassifyBlock(vpc, 1, 0, slicenum, 0, vpc->xlen-1, slicenum,
vpc->zlen-1, opc_slice, vpc->zlen*sizeof(float),
0, sizeof(float));
break;
case VP_Z_AXIS:
VPClassifyBlock(vpc, 1, 0, 0, slicenum, vpc->xlen-1, vpc->ylen-1,
slicenum, opc_slice, sizeof(float),
vpc->xlen*sizeof(float), 0);
break;
}
}
/*
* ShadeSlice
*
* Shade a slice of voxels.
*/
static void
ShadeSlice(vpc, slicenum, clr_slice)
vpContext *vpc;
int slicenum;
float *clr_slice;
{
int color_bytes;
color_bytes = sizeof(float) * vpc->color_channels;
switch (vpc->best_view_axis) {
case VP_X_AXIS:
VPShadeBlock(vpc, slicenum, 0, 0, slicenum, vpc->ylen-1, vpc->zlen-1,
clr_slice, 0, color_bytes, vpc->ylen*color_bytes);
break;
case VP_Y_AXIS:
VPShadeBlock(vpc, 0, slicenum, 0, vpc->xlen-1, slicenum, vpc->zlen-1,
clr_slice, vpc->zlen*color_bytes, 0, color_bytes);
break;
case VP_Z_AXIS:
VPShadeBlock(vpc, 0, 0, slicenum, vpc->xlen-1, vpc->ylen-1, slicenum,
clr_slice, color_bytes, vpc->xlen*color_bytes, 0);
break;
}
}
/*
* ScaleColors
*
* Weight voxel colors by a constant factor for the whole slice.
*/
static void
ScaleColors(scale, clr_slice, width, height, color_channels)
double scale;
float *clr_slice;
int width;
int height;
int color_channels;
{
int i, j;
float s;
s = scale;
for (j = 0; j < height; j++) {
for (i = 0; i < width; i++) {
if (color_channels == 1) {
clr_slice[0] *= s;
} else {
clr_slice[0] *= s;
clr_slice[1] *= s;
clr_slice[2] *= s;
}
clr_slice += color_channels;
}
}
}
/*
* AlphaScaleColors
*
* Weight voxel colors by voxels opacities.
*/
static void
AlphaScaleColors(opc_slice, clr_slice, width, height, color_channels)
float *opc_slice; /* 2D array of opacities (width by height) */
float *clr_slice; /* 2D array of colors (width by height) */
int width; /* size of voxel slice */
int height;
int color_channels; /* number of color channels in clr_slice */
{
int i, j;
for (j = 0; j < height; j++) {
for (i = 0; i < width; i++) {
if (color_channels == 1) {
clr_slice[0] *= opc_slice[0];
} else {
clr_slice[0] *= opc_slice[0];
clr_slice[1] *= opc_slice[0];
clr_slice[2] *= opc_slice[0];
}
clr_slice += color_channels;
opc_slice++;
}
}
}
/*
* DepthCueSlice
*
* Apply depth cueing factor to each voxel in a slice.
*/
static void
DepthCueSlice(vpc, clr_slice, width, height, color_channels,
depth_00k, depth_di, depth_dj)
vpContext *vpc;
float *clr_slice;
int width;
int height;
int color_channels;
double depth_00k; /* depth of top-left voxel in slice */
double depth_di, depth_dj; /* change in depth for unit change in
i/j directions */
{
int i, j;
double depth, depth_0jk, factor;
double dc_front_factor, dc_density;
dc_front_factor = vpc->dc_front_factor;
dc_density = vpc->dc_density;
depth_0jk = depth_00k;
for (j = 0; j < height; j++) {
depth = depth_0jk;
for (i = 0; i < width; i++) {
if (depth < 0.0)
factor = dc_front_factor * exp(-dc_density);
else
factor = dc_front_factor * exp(-dc_density * (1.0 - depth));
if (color_channels == 1) {
clr_slice[0] *= factor;
} else {
clr_slice[0] *= factor;
clr_slice[1] *= factor;
clr_slice[2] *= factor;
}
clr_slice += color_channels;
depth += depth_di;
}
depth_0jk += depth_dj;
}
}
/*
* TranslateSlice
*
* Translate and resample a slice of voxels.
*/
static void
TranslateSlice(opc_slice, clr_slice, width, height,
WgtTL_d, WgtBL_d, WgtTR_d, WgtBR_d,
color_channels, resamp_opc_slice, resamp_clr_slice)
float *opc_slice; /* 2D array of opacities (width by height) */
float *clr_slice; /* 2D array of colors (width by height) */
int width; /* size of voxel slice */
int height;
double WgtTL_d; /* resampling weights */
double WgtBL_d;
double WgtTR_d;
double WgtBR_d;
int color_channels; /* number of color channels in clr_slice */
float *resamp_opc_slice;/* 2D array for storing resampled opacities
(width+1 by height+1) */
float *resamp_clr_slice;/* 2D array for storing resampled colors
(width+1 by height+1) */
{
int i, j;
float WgtTL, WgtBL, WgtTR, WgtBR;
float OpcAcc, RClrAcc, GClrAcc, BClrAcc;
WgtTL = WgtTL_d;
WgtBL = WgtBL_d;
WgtTR = WgtTR_d;
WgtBR = WgtBR_d;
for (j = 0; j <= height; j++) {
for (i = 0; i <= width; i++) {
OpcAcc = 0.;
RClrAcc = 0.;
GClrAcc = 0.;
BClrAcc = 0.;
if (i > 0 && j > 0) {
OpcAcc += WgtTL * opc_slice[-1-width];
if (color_channels == 1) {
RClrAcc += WgtTL * clr_slice[-1-width];
} else {
RClrAcc += WgtTL * clr_slice[3*(-1-width)];
GClrAcc += WgtTL * clr_slice[3*(-1-width)+1];
BClrAcc += WgtTL * clr_slice[3*(-1-width)+2];
}
}
if (i > 0 && j < height) {
OpcAcc += WgtBL * opc_slice[-1];
if (color_channels == 1) {
RClrAcc += WgtBL * clr_slice[-1];
} else {
RClrAcc += WgtBL * clr_slice[3*(-1)];
GClrAcc += WgtBL * clr_slice[3*(-1)+1];
BClrAcc += WgtBL * clr_slice[3*(-1)+2];
}
}
if (i < width && j > 0) {
OpcAcc += WgtTR * opc_slice[-width];
if (color_channels == 1) {
RClrAcc += WgtTR * clr_slice[-width];
} else {
RClrAcc += WgtTR * clr_slice[3*(-width)];
GClrAcc += WgtTR * clr_slice[3*(-width)+1];
BClrAcc += WgtTR * clr_slice[3*(-width)+2];
}
}
if (i < width && j < height) {
OpcAcc += WgtBR * opc_slice[0];
if (color_channels == 1) {
RClrAcc += WgtBR * clr_slice[0];
} else {
RClrAcc += WgtBR * clr_slice[3*(0)];
GClrAcc += WgtBR * clr_slice[3*(0)+1];
BClrAcc += WgtBR * clr_slice[3*(0)+2];
}
}
*resamp_opc_slice = OpcAcc;
if (color_channels == 1) {
*resamp_clr_slice = RClrAcc;
} else {
resamp_clr_slice[0] = RClrAcc;
resamp_clr_slice[1] = GClrAcc;
resamp_clr_slice[2] = BClrAcc;
}
resamp_opc_slice++;
resamp_clr_slice += color_channels;
if (i != width) {
opc_slice++;
clr_slice += color_channels;;
}
}
}
}
/*
* CompositeSlice
*
* Composite a resampled slice of voxels into the intermediate image.
*/
static void
CompositeSlice(resamp_opc, resamp_clr, width, height, color_channels,
int_image_ptr, int_image_width, min_opacity)
float *resamp_opc; /* array of resampled opacities (width by height) */
float *resamp_clr; /* array of resampled colors (width by height) */
int width; /* size of resampled voxel arrays */
int height;
int color_channels; /* number of color channels */
void *int_image_ptr; /* pointer to intermediate image pixel corresponding
to top-left resampled voxel */
int int_image_width; /* number of pixels in intermediate image scanline */
double min_opacity; /* low opacity threshold */
{
int i, j;
float old_opc, old_r, old_g, old_b;
float new_opc, new_r, new_g, new_b;
GrayIntPixel *gray_intim;
RGBIntPixel *rgb_intim;
if (color_channels == 1)
gray_intim = int_image_ptr;
else
rgb_intim = int_image_ptr;
for (j = 0; j < height; j++) {
for (i = 0; i < width; i++) {
if (*resamp_opc > min_opacity) {
if (color_channels == 1) {
old_opc = gray_intim->opcflt;
old_r = gray_intim->clrflt;
new_opc = old_opc + *resamp_opc * ((float)1. - old_opc);
new_r = old_r + *resamp_clr * ((float)1. - old_opc);
gray_intim->opcflt = new_opc;
gray_intim->clrflt = new_r;
} else {
old_opc = rgb_intim->opcflt;
old_r = rgb_intim->rclrflt;
old_g = rgb_intim->gclrflt;
old_b = rgb_intim->bclrflt;
new_opc = old_opc + *resamp_opc * ((float)1. - old_opc);
new_r = old_r + resamp_clr[0] * ((float)1. - old_opc);
new_g = old_g + resamp_clr[1] * ((float)1. - old_opc);
new_b = old_b + resamp_clr[2] * ((float)1. - old_opc);
rgb_intim->opcflt = new_opc;
rgb_intim->rclrflt = new_r;
rgb_intim->gclrflt = new_g;
rgb_intim->bclrflt = new_b;
}
}
resamp_opc++;
if (color_channels == 1) {
resamp_clr++;
gray_intim++;
} else {
resamp_clr += 3;
rgb_intim++;
}
} /* for i */
if (color_channels == 1)
gray_intim += int_image_width - width;
else
rgb_intim += int_image_width - width;
} /* for j */
}
/*
* AffineBruteForceWarp
*
* Warp the intermediate image into the final image (brute-force version,
* affine transformations only).
*/
static void
AffineBruteForceWarp(vpc)
vpContext *vpc;
{
unsigned char *int_image; /* pointer to start of intermediate image
(GrayIntPixel or RGBIntPixel) */
int int_width; /* size of intermediate image */
int int_height;
int int_scanbytes; /* bytes per scanline in intermediate image */
unsigned char *image; /* final image pixel */
int i, j; /* coordinates of final image pixel */
float int_i_flt, int_j_flt; /* position of final image pixel in
intermediate image coordinates */
float int_i_int, int_j_int; /* truncated int_i_flt, int_j_flt */
int int_i, int_j; /* integer int_i_int, int_j_int */
double alpha_i, alpha_j; /* separable interpolation weights */
double wgt; /* interpolation weight */
GrayIntPixel *gray_pix; /* intermediate image pixel (grayscale) */
RGBIntPixel *rgb_pix; /* intermediate image pixel (RGB) */
double denom;
double ma, mb, mc, md, me, mf;
float r, g, b, alpha;
int r_int, g_int, b_int, alpha_int;
int color_channels; /* number of color channels in int. image */
int pixel_type; /* type of output image pixel */
/* initialize */
color_channels = vpc->color_channels;
pixel_type = vpc->pixel_type;
int_width = vpc->intermediate_width;
int_height = vpc->intermediate_height;
if (vpc->color_channels == 1) {
int_image = (unsigned char *)vpc->int_image.gray_intim;
if (vpc->pad_int_to_maxwidth)
int_scanbytes = vpc->max_intermediate_width*sizeof(GrayIntPixel);
else
int_scanbytes = vpc->intermediate_width*sizeof(GrayIntPixel);
} else {
int_image = (unsigned char *)vpc->int_image.rgb_intim;
if (vpc->pad_int_to_maxwidth)
int_scanbytes = vpc->max_intermediate_width*sizeof(RGBIntPixel);
else
int_scanbytes = vpc->intermediate_width*sizeof(RGBIntPixel);
}
/* compute transformation from final image pixel to intermediate
image pixel */
denom = 1. / (vpc->warp_2d[0][0]*vpc->warp_2d[1][1] -
vpc->warp_2d[0][1]*vpc->warp_2d[1][0]);
ma = vpc->warp_2d[1][1] * denom;
mb = -vpc->warp_2d[0][1] * denom;
mc = (vpc->warp_2d[0][1]*vpc->warp_2d[1][2] -
vpc->warp_2d[1][1]*vpc->warp_2d[0][2]) * denom;
md = -vpc->warp_2d[1][0] * denom;
me = vpc->warp_2d[0][0] * denom;
mf = (vpc->warp_2d[1][0]*vpc->warp_2d[0][2] -
vpc->warp_2d[0][0]*vpc->warp_2d[1][2]) * denom;
/* loop over the pixels of the final image */
for (j = 0; j < vpc->image_height; j++) {
image = (unsigned char *)vpc->image + j*vpc->image_bytes_per_scan;
for (i = 0; i < vpc->image_width; i++) {
/* reverse-map final image pixel into intermediate image */
int_i_flt = ma*i + mb*j + mc;
int_j_flt = md*i + me*j + mf;
/* compute interpolation weights */
int_i_int = floor(int_i_flt);
int_j_int = floor(int_j_flt);
alpha_i = int_i_flt - int_i_int;
alpha_j = int_j_flt - int_j_int;
int_i = (int)int_i_int;
int_j = (int)int_j_int;
/* interpolate */
r = 0;
g = 0;
b = 0;
alpha = 0;
if (int_i >= 0 && int_i < int_width &&
int_j >= 0 && int_j < int_height) {
wgt = (1. - alpha_i) * (1. - alpha_j);
if (color_channels == 1) {
gray_pix = (GrayIntPixel *)(int_image + int_j*
int_scanbytes) + int_i;
r += gray_pix->clrflt*wgt;
alpha += gray_pix->opcflt*wgt;
} else {
rgb_pix = (RGBIntPixel *)(int_image + int_j*
int_scanbytes) + int_i;
r += rgb_pix->rclrflt*wgt;
g += rgb_pix->gclrflt*wgt;
b += rgb_pix->bclrflt*wgt;
alpha += rgb_pix->opcflt*wgt;
}
}
if (int_i >= 0 && int_i < int_width &&
int_j >= -1 && int_j < int_height-1) {
wgt = (1. - alpha_i) * alpha_j;
if (color_channels == 1) {
gray_pix = (GrayIntPixel *)(int_image + (int_j+1)*
int_scanbytes) + int_i;
r += gray_pix->clrflt*wgt;
alpha += gray_pix->opcflt*wgt;
} else {
rgb_pix = (RGBIntPixel *)(int_image + (int_j+1)*
int_scanbytes) + int_i;
r += rgb_pix->rclrflt*wgt;
g += rgb_pix->gclrflt*wgt;
b += rgb_pix->bclrflt*wgt;
alpha += rgb_pix->opcflt*wgt;
}
}
if (int_i >= -1 && int_i < int_width-1 &&
int_j >= 0 && int_j < int_height) {
wgt = alpha_i * (1. - alpha_j);
if (color_channels == 1) {
gray_pix = (GrayIntPixel *)(int_image + int_j*
int_scanbytes) + int_i+1;
r += gray_pix->clrflt*wgt;
alpha += gray_pix->opcflt*wgt;
} else {
rgb_pix = (RGBIntPixel *)(int_image + int_j*
int_scanbytes) + int_i+1;
r += rgb_pix->rclrflt*wgt;
g += rgb_pix->gclrflt*wgt;
b += rgb_pix->bclrflt*wgt;
alpha += rgb_pix->opcflt*wgt;
}
}
if (int_i >= -1 && int_i < int_width-1 &&
int_j >= -1 && int_j < int_height-1) {
wgt = alpha_i * alpha_j;
if (color_channels == 1) {
gray_pix = (GrayIntPixel *)(int_image + (int_j+1)*
int_scanbytes) + int_i+1;
r += gray_pix->clrflt*wgt;
alpha += gray_pix->opcflt*wgt;
} else {
rgb_pix = (RGBIntPixel *)(int_image + (int_j+1)*
int_scanbytes) + int_i+1;
r += rgb_pix->rclrflt*wgt;
g += rgb_pix->gclrflt*wgt;
b += rgb_pix->bclrflt*wgt;
alpha += rgb_pix->opcflt*wgt;
}
}
/* clamp the pixel */
if (alpha > 255.)
alpha_int = 255;
else if (alpha < 0.)
alpha_int = 0;
else
alpha_int = alpha;
if (r > 255.)
r_int = 255;
else if (r < 0)
r_int = 0;
else
r_int = r;
if (color_channels == 3) {
if (g > 255.)
g_int = 255;
else if (g < 0.)
g_int = 0;
else
g_int = g;
if (b > 255.)
b_int = 255;
else if (b < 0.)
b_int = 0;
else
b_int = b;
}
/* store the pixel */
switch (pixel_type) {
case VP_ALPHA:
*image++ = alpha_int;
break;
case VP_LUMINANCE:
*image++ = r_int;
break;
case VP_LUMINANCEA:
*image++ = r_int;
*image++ = alpha_int;
break;
case VP_RGB:
*image++ = r_int;
*image++ = g_int;
*image++ = b_int;
break;
case VP_RGBA:
*image++ = r_int;
*image++ = g_int;
*image++ = b_int;
*image++ = alpha_int;
break;
case VP_BGR:
*image++ = b_int;
*image++ = g_int;
*image++ = r_int;
break;
case VP_ABGR:
*image++ = alpha_int;
*image++ = b_int;
*image++ = g_int;
*image++ = r_int;
break;
default:
VPBug("bad pixel type");
}
} /* for i */
} /* for j */
}
#ifdef DEBUG
StoreFloatImage(data, width, height, scale, filename)
float *data; /* array of input data */
int width, height; /* size of array */
double scale; /* factor for scaling pixel values */
char *filename; /* name of file to store result */
{
unsigned char *image, *imptr;
int i, j;
image = (unsigned char *)malloc(width*height);
imptr = image;
for (j = 0; j < height; j++) {
for (i = 0; i < width; i++) {
*imptr++ = (int)rint(scale * *data++);
}
}
VprWriteGrayscaleTIFF(filename, width, height, width, image);
free(image);
}
#endif
|