File: vp_renderA.c

package info (click to toggle)
volpack 1.0b3-9
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye
  • size: 4,772 kB
  • sloc: ansic: 12,177; sh: 9,078; makefile: 90; csh: 76
file content (890 lines) | stat: -rw-r--r-- 32,278 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
/*
 * vp_renderA.c
 *
 * Shear-warp volume rendering algorithm for affine view transformations.
 *
 * Copyright (c) 1994 The Board of Trustees of The Leland Stanford
 * Junior University.  All rights reserved.
 *
 * Permission to use, copy, modify and distribute this software and its
 * documentation for any purpose is hereby granted without fee, provided
 * that the above copyright notice and this permission notice appear in
 * all copies of this software and that you do not sell the software.
 * Commercial licensing is available by contacting the author.
 * 
 * THE SOFTWARE IS PROVIDED "AS IS" AND WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
 * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
 *
 * Author:
 *    Phil Lacroute
 *    Computer Systems Laboratory
 *    Electrical Engineering Dept.
 *    Stanford University
 */

/*
 * $Date: 1994/12/30 23:52:38 $
 * $Revision: 1.23 $
 */

#include "vp_global.h"

/*#define DUMP_SHADOW_VOLUME*/
/*#define DUMP_GRAY_VOLUME*/

extern void VPCompAC00G ANSI_ARGS((vpContext *vpc, int icount, int jcount,
    int k, double slice_depth_cueing_dbl, GrayIntPixel *intimage,
    double weightTLdbl, double weightBLdbl, double weightTRdbl,
    double weightBRdbl, unsigned char *run_lengths, void *voxel_data));
extern void VPCompAR00G ANSI_ARGS((vpContext *vpc, int icount, int jcount,
    int k, double slice_depth_cueing_dbl, GrayIntPixel *intimage,
    double weightTLdbl, double weightBLdbl, double weightTRdbl,
    double weightBRdbl, void *voxel_data, int voxel_istride,
    int voxel_jstride));
extern void VPWarpA101N ANSI_ARGS((GrayIntPixel *in_image, int in_width,
    int in_height, int in_bytes_per_scan, unsigned char *out_image,
    int out_width, int out_height, int out_bytes_per_scan,
    vpMatrix3 warp_matrix));
extern void VPWarpA110N ANSI_ARGS((GrayIntPixel *in_image, int in_width,
    int in_height, int in_bytes_per_scan, unsigned char *out_image,
    int out_width, int out_height, int out_bytes_per_scan,
    vpMatrix3 warp_matrix));
extern void VPWarpA111N ANSI_ARGS((GrayIntPixel *in_image, int in_width,
    int in_height, int in_bytes_per_scan, unsigned char *out_image,
    int out_width, int out_height, int out_bytes_per_scan,
    vpMatrix3 warp_matrix));
extern void VPWarpA301N ANSI_ARGS((RGBIntPixel *in_image, int in_width,
    int in_height, int in_bytes_per_scan, unsigned char *out_image,
    int out_width, int out_height, int out_bytes_per_scan,
    vpMatrix3 warp_matrix));
extern void VPWarpA330N ANSI_ARGS((RGBIntPixel *in_image, int in_width,
    int in_height, int in_bytes_per_scan, unsigned char *out_image,
    int out_width, int out_height, int out_bytes_per_scan,
    vpMatrix3 warp_matrix));
extern void VPWarpA331N ANSI_ARGS((RGBIntPixel *in_image, int in_width,
    int in_height, int in_bytes_per_scan, unsigned char *out_image,
    int out_width, int out_height, int out_bytes_per_scan,
    vpMatrix3 warp_matrix));
extern void VPWarpA330R ANSI_ARGS((RGBIntPixel *in_image, int in_width,
    int in_height, int in_bytes_per_scan, unsigned char *out_image,
    int out_width, int out_height, int out_bytes_per_scan,
    vpMatrix3 warp_matrix));
extern void VPWarpA331R ANSI_ARGS((RGBIntPixel *in_image, int in_width,
    int in_height, int in_bytes_per_scan, unsigned char *out_image,
    int out_width, int out_height, int out_bytes_per_scan,
    vpMatrix3 warp_matrix));

#ifdef STATISTICS
extern int vpResampleCount;
extern int vpCompositeCount;
extern int vpERTSkipCount;
extern int vpERTSkipAgainCount;
extern int vpERTUpdateCount;
extern int vpSpecialZeroSkipCount;
extern int vpRunFragmentCount;
#endif

/*
 * VPRenderAffine
 *
 * Render a classified volume with an affine viewing transformation.
 */

void
VPRenderAffine(vpc, algorithm, composite_func)
vpContext *vpc;
int algorithm;	/* USE_RLEVOLUME or USE_RAWVOLUME */
void (*composite_func)(); /* function to do the compositing */
{
    int icount;			/* voxels per voxel scanline */
    int jcount;			/* voxel scanlines per voxel slice */
    int kcount;			/* voxel slices in the volume */
    int istride;		/* strides for each dimension of raw volume */
    int jstride;
    int kstride;
    int k;			/* voxel slice index */
    int kstart, kstop;		/* values of k for first and last slices */
    int kincr;			/* value to add to k to get to the next slice
				   (either 1 or -1) */
    RLEVoxels *rle_voxels;	/* run-length encoded volume */
    float slice_u, slice_v;	/* sheared object space coordinates of the
				   top-left corner of the current constant-k
				   slice of the volume data */
    int slice_u_int;		/* integer part of slice_u and slice_v */
    int slice_v_int;
    float slice_u_frac;		/* fractional part of slice_u and slice_v */
    float slice_v_frac;
    int slice_start_index;	/* index of top-left int. image pixel */
    float WgtTL, WgtBL,		/* weights in the range 0..1 which give the */
	  WgtTR, WgtBR;		/*   fractional contribution of the */
    				/*   neighboring voxels to the current */
    			        /*   intermediate image pixel */
    int color_channels;		/* number of color channels to compute */
    float slice_depth_cueing;	/* depth cueing factor for current slice */
    float slice_dc_ratio;	/* multiplier to get depth cueing factor
				   for the next slice */
    unsigned char *run_lengths;	/* run lengths for slice */
    void *voxel_data;		/* voxel data for slice */
    void *intimage;		/* first intermediate image pixel for slice */
    int scan_offset_index;	/* index into scan_offsets for this slice */
    float shadow_slice_u;	/* top-left corner of voxel slice in shadow */
    float shadow_slice_v;	/*    buffer coordinates */
    int shadow_slice_u_int;	/* integer part of shadow_slice_u/v */
    int shadow_slice_v_int;
    int shadow_slice_start_index;/* index of top-left shadow buffer pixel */
    GrayIntPixel *shadow_image;	/* first shadow buffer pixel for slice */
    int shadow_k;		/* voxel slice number plus shadow bias */
#ifdef DUMP_SHADOW_VOLUME
    unsigned char *shadow_dump;
#endif
#ifdef DUMP_GRAY_VOLUME
    unsigned char *gray_dump;
#endif
#ifdef DUMP_SHADOW_VOLUME
    int dump_fd;
    int dump_value;
#else
#ifdef DUMP_GRAY_VOLUME
    int dump_fd;
    int dump_value;
#endif
#endif
#ifdef DEBUG
    GrayIntPixel *trace_gray_ptr = &vpc->int_image.gray_intim[vpc->trace_u + 
				    vpc->trace_v*vpc->intermediate_width];
    RGBIntPixel *trace_rgb_ptr = &vpc->int_image.rgb_intim[vpc->trace_u + 
				    vpc->trace_v*vpc->intermediate_width];
    float vox_depth;
#endif
    DECLARE_TIME(t0);
    DECLARE_TIME(t1);
    DECLARE_TIME(tA);
    DECLARE_TIME(tB);

#ifdef STATISTICS
    vpResampleCount = 0;
    vpCompositeCount = 0;
    vpERTSkipCount = 0;
    vpERTSkipAgainCount = 0;
    vpERTUpdateCount = 0;
    vpSpecialZeroSkipCount = 0;
    vpRunFragmentCount = 0;
#endif

    GET_TIME(vpc, tA);

    /* initialize for the fast classification algorithm */
    if (algorithm == USE_RAWVOLUME && vpc->mm_octree != NULL) {
	ASSERT(vpc->raw_voxels != NULL);
	GET_TIME(vpc, t0);
	VPComputeSummedAreaTable(vpc);
	VPClassifyOctree(vpc);
	GET_TIME(vpc, t1);
	STORE_TIME(vpc, VPTIMER_CLSFY_OCTREE, t0, t1);
    }

    /* find size of volume */
    if (algorithm == USE_RLEVOLUME) {
	switch (vpc->best_view_axis) {
	case VP_X_AXIS:
	    rle_voxels = vpc->rle_x;
	    break;
	case VP_Y_AXIS:
	    rle_voxels = vpc->rle_y;
	    break;
	case VP_Z_AXIS:
	    rle_voxels = vpc->rle_z;
	    break;
	default:
	    VPBug("invalid viewing axis in AffineRender");
	}
	icount = rle_voxels->ilen;
	jcount = rle_voxels->jlen;
	kcount = rle_voxels->klen;
    } else {
	switch (vpc->best_view_axis) {
	case VP_X_AXIS:
	    icount = vpc->ylen;
	    jcount = vpc->zlen;
	    kcount = vpc->xlen;
	    istride = vpc->ystride;
	    jstride = vpc->zstride;
	    kstride = vpc->xstride;
	    break;
	case VP_Y_AXIS:
	    icount = vpc->zlen;
	    jcount = vpc->xlen;
	    kcount = vpc->ylen;
	    istride = vpc->zstride;
	    jstride = vpc->xstride;
	    kstride = vpc->ystride;
	    break;
	case VP_Z_AXIS:
	    icount = vpc->xlen;
	    jcount = vpc->ylen;
	    kcount = vpc->zlen;
	    istride = vpc->xstride;
	    jstride = vpc->ystride;
	    kstride = vpc->zstride;
	    break;
	default:
	    VPBug("invalid viewing axis in AffineRender");
	}
    }

    GET_TIME(vpc, t0);

    /* initialize intermediate image */
    color_channels = vpc->color_channels;
    vpc->pad_int_to_maxwidth = 0;
    if (color_channels == 1) {
	bzero(vpc->int_image.gray_intim, vpc->intermediate_width *
	      vpc->intermediate_height * sizeof(GrayIntPixel));
    } else {
	ASSERT(color_channels == 3);
	bzero(vpc->int_image.rgb_intim, vpc->intermediate_width *
	      vpc->intermediate_height * sizeof(RGBIntPixel));
    }

    /* initialize shadow buffer */
    if (vpc->enable_shadows) {
	vpc->pad_shadow_to_maxwidth = 0;
	bzero(vpc->shadow_buffer, vpc->shadow_width *
	      vpc->shadow_height * sizeof(GrayIntPixel));
    }
#ifdef DUMP_SHADOW_VOLUME
    Alloc(vpc, shadow_dump, char *, vpc->shadow_width * vpc->shadow_height *
	  kcount, "shadow_dump");
#endif
#ifdef DUMP_GRAY_VOLUME
    Alloc(vpc, gray_dump, char *, vpc->intermediate_width * 
	  vpc->intermediate_height * kcount, "gray_dump");
#endif

    GET_TIME(vpc, t1);
    STORE_TIME(vpc, VPTIMER_CLEAR, t0, t1);

    /* initialize depth cueing */
    slice_dc_ratio = VPSliceDepthCueRatio(vpc);
    slice_depth_cueing = 1.;
#ifdef DEBUG
    Debug((vpc, VPDEBUG_DEPTHCUE, "depth cueing at cube corners:\n"));
    vox_depth = vpc->depth_000 + 0*vpc->depth_di +
	0*vpc->depth_dj + 0*vpc->depth_dk;
    if (vox_depth < 0.0)
	vox_depth = 0.0;
    Debug((vpc, VPDEBUG_DEPTHCUE,
	   "  %3d %3d %3d: depth = %12.6f, factor = %12.6f\n",
	   0, 0, 0, vox_depth,
	   vpc->dc_front_factor * exp(-vpc->dc_density * (1.0 - vox_depth))));
    vox_depth = vpc->depth_000 + icount*vpc->depth_di +
	0*vpc->depth_dj + 0*vpc->depth_dk;
    if (vox_depth < 0.0)
	vox_depth = 0.0;
    Debug((vpc, VPDEBUG_DEPTHCUE,
	   "  %3d %3d %3d: depth = %12.6f, factor = %12.6f\n",
	   icount, 0, 0, vox_depth,
	   vpc->dc_front_factor * exp(-vpc->dc_density * (1.0 - vox_depth))));
    vox_depth = vpc->depth_000 + icount*vpc->depth_di +
	jcount*vpc->depth_dj + 0*vpc->depth_dk;
    if (vox_depth < 0.0)
	vox_depth = 0.0;
    Debug((vpc, VPDEBUG_DEPTHCUE,
	   "  %3d %3d %3d: depth = %12.6f, factor = %12.6f\n",
	   icount, jcount, 0, vox_depth,
	   vpc->dc_front_factor * exp(-vpc->dc_density * (1.0 - vox_depth))));
    vox_depth = vpc->depth_000 + 0*vpc->depth_di +
	jcount*vpc->depth_dj + 0*vpc->depth_dk;
    if (vox_depth < 0.0)
	vox_depth = 0.0;
    Debug((vpc, VPDEBUG_DEPTHCUE,
	   "  %3d %3d %3d: depth = %12.6f, factor = %12.6f\n",
	   0, jcount, 0, vox_depth,
	   vpc->dc_front_factor * exp(-vpc->dc_density * (1.0 - vox_depth))));
    vox_depth = vpc->depth_000 + 0*vpc->depth_di +
	0*vpc->depth_dj + kcount*vpc->depth_dk;
    if (vox_depth < 0.0)
	vox_depth = 0.0;
    Debug((vpc, VPDEBUG_DEPTHCUE,
	   "  %3d %3d %3d: depth = %12.6f, factor = %12.6f\n",
	   0, 0, kcount, vox_depth,
	   vpc->dc_front_factor * exp(-vpc->dc_density * (1.0 - vox_depth))));
    vox_depth = vpc->depth_000 + icount*vpc->depth_di +
	0*vpc->depth_dj + kcount*vpc->depth_dk;
    if (vox_depth < 0.0)
	vox_depth = 0.0;
    Debug((vpc, VPDEBUG_DEPTHCUE,
	   "  %3d %3d %3d: depth = %12.6f, factor = %12.6f\n",
	   icount, 0, kcount, vox_depth,
	   vpc->dc_front_factor * exp(-vpc->dc_density * (1.0 - vox_depth))));
    vox_depth = vpc->depth_000 + icount*vpc->depth_di +
	jcount*vpc->depth_dj + kcount*vpc->depth_dk;
    if (vox_depth < 0.0)
	vox_depth = 0.0;
    Debug((vpc, VPDEBUG_DEPTHCUE,
	   "  %3d %3d %3d: depth = %12.6f, factor = %12.6f\n",
	   icount, jcount, kcount, vox_depth,
	   vpc->dc_front_factor * exp(-vpc->dc_density * (1.0 - vox_depth))));
    vox_depth = vpc->depth_000 + 0*vpc->depth_di +
	jcount*vpc->depth_dj + kcount*vpc->depth_dk;
    if (vox_depth < 0.0)
	vox_depth = 0.0;
    Debug((vpc, VPDEBUG_DEPTHCUE,
	   "  %3d %3d %3d: depth = %12.6f, factor = %12.6f\n",
	   0, jcount, kcount, vox_depth,
	   vpc->dc_front_factor * exp(-vpc->dc_density * (1.0 - vox_depth))));
#endif /* DEBUG */

#ifdef DEBUG
    /* initialize pixel tracing */
    if (vpc->trace_u != -1) {
	if (vpc->trace_u < 0 || vpc->trace_v < 0 ||
	    vpc->trace_u >= vpc->intermediate_width ||
	    vpc->trace_v >= vpc->intermediate_height) {
	    printf("Traced pixel is out of bounds.\n");
	} else {
	    printf("Trace for pixel u=%d, v=%d",
		   vpc->trace_u, vpc->trace_v);
	    if (vpc->enable_shadows)
		printf(", shadow_k=%d", vpc->trace_shadow_k);
	    printf(" (View %c, slice size %d,%d)\n",
		   vpc->best_view_axis + 'X', icount, jcount);
	    printf("Slice   Slice      TopLft       BotLft       ");
	    printf("TopRgt       BotRgt    Compos.\n");
	    printf("       BRX/BRY  Opc/Clr/Wgt  Opc/Clr/Wgt  Opc/Clr/Wgt  ");
	    printf("Opc/Clr/Wgt  Opc/Clr\n");
	}
    }
#endif

    /* compute outer loop bounds */
    if (vpc->reverse_slice_order) {
	kstart = kcount-1;
	kstop = -1;
	kincr = -1;
    } else {
	kstart = 0;
	kincr = 1;
	kstop = kcount;
    }
    shadow_k = kstart - vpc->shadow_bias * kincr;

    /* loop over slices of the voxel data in front-to-back order */
    for (k = kstart; k != kstop; k += kincr) {
	ReportStatus(vpc, (double)(k - kstart)/(double)(kstop - kstart));

	/* update shadow buffer */
	if (vpc->enable_shadows && shadow_k >= 0 && shadow_k < kcount) {
	    /* compute coordinates of slice in shadow buffer;
	       shadow bias determines which slice (usually
	       a few slices old in order to eliminate self-shadowing) */
	    shadow_slice_u = vpc->shadow_shear_i * shadow_k + 
		vpc->shadow_trans_i;
	    shadow_slice_v = vpc->shadow_shear_j * shadow_k +
		vpc->shadow_trans_j;
	    shadow_slice_u_int = (int)ceil(shadow_slice_u) - 1;
	    shadow_slice_v_int = (int)ceil(shadow_slice_v) - 1;
	    shadow_slice_start_index = shadow_slice_u_int +
		shadow_slice_v_int*vpc->shadow_width;
	    shadow_image = &vpc->shadow_buffer[shadow_slice_start_index];

	    /* compute resampling weights for voxel slice in shadow buffer */
	    slice_u_frac = shadow_slice_u - shadow_slice_u_int;
	    slice_v_frac = shadow_slice_v - shadow_slice_v_int;
	    WgtTL = slice_u_frac * slice_v_frac;
	    WgtBL = slice_u_frac * ((float)1. - slice_v_frac);
	    WgtTR = ((float)1. - slice_u_frac) * slice_v_frac;
	    WgtBR = ((float)1. - slice_u_frac) * ((float)1. - slice_v_frac);

	    /* composite voxel opacities into shadow buffer */
	    if (algorithm == USE_RLEVOLUME) {
		scan_offset_index = shadow_k *
		    rle_voxels->scan_offsets_per_slice;
		run_lengths = rle_voxels->run_lengths + 
		    rle_voxels->scan_offsets[scan_offset_index].first_len;
		voxel_data = (void *)((char *)rle_voxels->data +
		    rle_voxels->scan_offsets[scan_offset_index].first_data);
		VPCompAC00G(vpc, icount, jcount, shadow_k, slice_depth_cueing,
			    shadow_image, WgtTL, WgtBL, WgtTR, WgtBR,
			    run_lengths, voxel_data);
	    } else {
		voxel_data = (void *)((char *)vpc->raw_voxels + 
				      shadow_k*kstride);
		VPCompAR00G(vpc, icount, jcount, shadow_k, slice_depth_cueing,
			    shadow_image, WgtTL, WgtBL, WgtTR, WgtBR,
			    voxel_data, istride, jstride);
	    }
	}
	shadow_k += kincr;

	/* compute coordinates of top-left corner of voxel slice in
	   intermediate image */
	slice_u = vpc->shear_i * k + vpc->trans_i;
	slice_v = vpc->shear_j * k + vpc->trans_j;
	slice_u_int = (int)ceil(slice_u) - 1;
	slice_v_int = (int)ceil(slice_v) - 1;
	slice_start_index = slice_u_int + slice_v_int*vpc->intermediate_width;
	if (color_channels == 1)
	    intimage = &vpc->int_image.gray_intim[slice_start_index];
	else
	    intimage = &vpc->int_image.rgb_intim[slice_start_index];

	/* compute resampling weights for this slice */
	slice_u_frac = slice_u - slice_u_int;
	slice_v_frac = slice_v - slice_v_int;
	WgtTL = slice_u_frac * slice_v_frac;
	WgtBL = slice_u_frac * ((float)1. - slice_v_frac);
	WgtTR = ((float)1. - slice_u_frac) * slice_v_frac;
	WgtBR = ((float)1. - slice_u_frac) * ((float)1. - slice_v_frac);

	/* compute coordinates of voxel slice in shadow buffer */
	if (vpc->enable_shadows) {
	    shadow_slice_u = vpc->shadow_shear_i * k + vpc->shadow_trans_i;
	    shadow_slice_v = vpc->shadow_shear_j * k + vpc->shadow_trans_j;
	    shadow_slice_u_int = (int)ceil(shadow_slice_u) - 1;
	    shadow_slice_v_int = (int)ceil(shadow_slice_v) - 1;
	    shadow_slice_start_index = shadow_slice_u_int +
		shadow_slice_v_int*vpc->shadow_width;
	    shadow_image = &vpc->shadow_buffer[shadow_slice_start_index];
	}

	/* find voxel data for this slice and composite */
	if (algorithm == USE_RLEVOLUME) {
	    scan_offset_index = k * rle_voxels->scan_offsets_per_slice;
	    run_lengths = rle_voxels->run_lengths + 
	    	      rle_voxels->scan_offsets[scan_offset_index].first_len;
	    voxel_data = (void *)((char *)rle_voxels->data +
		     rle_voxels->scan_offsets[scan_offset_index].first_data);
#ifdef INDEX_VOLUME
	    composite_func(vpc, icount, jcount, k, slice_depth_cueing,
			   intimage, WgtTL, WgtBL, WgtTR, WgtBR,
			   run_lengths, voxel_data,
			   rle_voxels->voxel_index + k * icount * jcount,
			   shadow_image);
#else
	    composite_func(vpc, icount, jcount, k, slice_depth_cueing,
			   intimage, WgtTL, WgtBL, WgtTR, WgtBR,
			   run_lengths, voxel_data, shadow_image);
#endif
	} else {
	    voxel_data = (void *)((char *)vpc->raw_voxels + k*kstride);
	    composite_func(vpc, icount, jcount, k, slice_depth_cueing,
			   intimage, WgtTL, WgtBL, WgtTR, WgtBR,
			   voxel_data, istride, jstride, shadow_image);
	}

	/* update depth cueing factor */
	slice_depth_cueing *= slice_dc_ratio;

#ifdef DUMP_SHADOW_VOLUME
	vpGetImage(vpc, shadow_dump + k * vpc->shadow_width *
		   vpc->shadow_height, vpc->shadow_width, vpc->shadow_height,
		   vpc->shadow_width, VP_ALPHA, VP_SHADOW_BUFFER);
#endif
#ifdef DUMP_GRAY_VOLUME
	vpGetImage(vpc, gray_dump + k * vpc->intermediate_width *
		   vpc->intermediate_height, vpc->intermediate_width,
		   vpc->intermediate_height, VP_LUMINANCE, VP_IMAGE_BUFFER);
#endif

    }
    ReportStatus(vpc, 1.0);

    GET_TIME(vpc, t1);
    STORE_TIME(vpc, VPTIMER_COMPOSITE, t0, t1);

#ifdef DEBUG
    /* print traced pixel before depth cueing */
    if (vpc->trace_u != -1) {
	if (vpc->trace_u >= 0 && vpc->trace_v >= 0 &&
	    vpc->trace_u < vpc->intermediate_width &&
	    vpc->trace_v < vpc->intermediate_height) {
	    if (color_channels == 1) {
		printf("Before depth cueing: opc = %.9f = %d",
		       trace_gray_ptr->opcflt*255.,
		       (int)(trace_gray_ptr->opcflt*255.));
		printf("   clr = %.9f = %d\n",
		       trace_gray_ptr->clrflt,
		       (int)trace_gray_ptr->clrflt);
	    } else {
		printf("Before depth cueing: opc = %14.9f = %3d",
		       trace_rgb_ptr->opcflt*255.,
		       (int)(trace_rgb_ptr->opcflt*255.));
		printf("   r = %14.9f = %d\n",
		       trace_rgb_ptr->rclrflt,
		       (int)trace_rgb_ptr->rclrflt);
		printf("                                               ");
		printf("   g = %14.9f = %d\n",
		       trace_rgb_ptr->gclrflt,
		       (int)trace_rgb_ptr->gclrflt);
		printf("                                               ");
		printf("   b = %14.9f = %d\n",
		       trace_rgb_ptr->bclrflt,
		       (int)trace_rgb_ptr->bclrflt);
	    }
	}
    }
#endif

    /* depth cue the intermediate image */
    if (vpc->dc_enable) {
	GET_TIME(vpc, t0);
	VPDepthCueIntImage(vpc, vpc->reverse_slice_order ? kcount-1 : 0);
	GET_TIME(vpc, t1);
	STORE_TIME(vpc, VPTIMER_DEPTHCUE, t0, t1);
    }

#ifdef DEBUG
    /* print final value of traced pixel */
    if (vpc->trace_u != -1) {
	if (vpc->trace_u >= 0 && vpc->trace_v >= 0 &&
	    vpc->trace_u < vpc->intermediate_width &&
	    vpc->trace_v < vpc->intermediate_height) {
	    if (color_channels == 1) {
		printf("Final pixel value:   opc = %.9f = %d",
		       trace_gray_ptr->opcflt*255.,
		       (int)(trace_gray_ptr->opcflt*255.));
		printf("   clr = %.9f = %d\n",
		       trace_gray_ptr->clrflt,
		       (int)trace_gray_ptr->clrflt);
	    } else {
		printf("Final pixel value:   opc = %14.9f = %3d",
		       trace_rgb_ptr->opcflt*255.,
		       (int)(trace_rgb_ptr->opcflt*255.));
		printf("   r = %14.9f = %d\n",
		       trace_rgb_ptr->rclrflt,
		       (int)trace_rgb_ptr->rclrflt);
		printf("                                               ");
		printf("   g = %14.9f = %d\n",
		       trace_rgb_ptr->gclrflt,
		       (int)trace_rgb_ptr->gclrflt);
		printf("                                               ");
		printf("   b = %14.9f = %d\n",
		       trace_rgb_ptr->bclrflt,
		       (int)trace_rgb_ptr->bclrflt);
	    }
	}
    }
#endif

    /* warp the intermediate image into the final image */
    GET_TIME(vpc, t0);
    switch (vpc->pixel_type) {
    case VP_ALPHA:
	if (color_channels == 1) {
	    VPWarpA101N(vpc->int_image.gray_intim, vpc->intermediate_width,
			vpc->intermediate_height, sizeof(GrayIntPixel) *
			(vpc->pad_int_to_maxwidth ?
			 vpc->max_intermediate_width:vpc->intermediate_width),
			vpc->image, vpc->image_width, vpc->image_height,
			vpc->image_bytes_per_scan, vpc->warp_2d);
	} else {
	    VPWarpA301N(vpc->int_image.rgb_intim, vpc->intermediate_width,
			vpc->intermediate_height, sizeof(RGBIntPixel) *
			(vpc->pad_int_to_maxwidth ?
			 vpc->max_intermediate_width:vpc->intermediate_width),
			vpc->image, vpc->image_width, vpc->image_height,
			vpc->image_bytes_per_scan, vpc->warp_2d);
	}
	break;
    case VP_LUMINANCE:
	ASSERT(color_channels == 1);
	VPWarpA110N(vpc->int_image.gray_intim, vpc->intermediate_width,
		    vpc->intermediate_height, sizeof(GrayIntPixel) *
		    (vpc->pad_int_to_maxwidth ?
		     vpc->max_intermediate_width:vpc->intermediate_width),
		    vpc->image, vpc->image_width, vpc->image_height,
		    vpc->image_bytes_per_scan, vpc->warp_2d);
	break;
    case VP_LUMINANCEA:
	ASSERT(color_channels == 1);
	VPWarpA111N(vpc->int_image.gray_intim, vpc->intermediate_width,
		    vpc->intermediate_height, sizeof(GrayIntPixel) *
		    (vpc->pad_int_to_maxwidth ?
		     vpc->max_intermediate_width:vpc->intermediate_width),
		    vpc->image, vpc->image_width, vpc->image_height,
		    vpc->image_bytes_per_scan, vpc->warp_2d);
	break;
    case VP_RGB:
	ASSERT(color_channels == 3);
	VPWarpA330N(vpc->int_image.rgb_intim, vpc->intermediate_width,
		    vpc->intermediate_height, sizeof(RGBIntPixel) *
		    (vpc->pad_int_to_maxwidth ?
		     vpc->max_intermediate_width:vpc->intermediate_width),
		    vpc->image, vpc->image_width, vpc->image_height,
		    vpc->image_bytes_per_scan, vpc->warp_2d);
	break;
    case VP_RGBA:
	ASSERT(color_channels == 3);
	VPWarpA331N(vpc->int_image.rgb_intim, vpc->intermediate_width,
		    vpc->intermediate_height, sizeof(RGBIntPixel) *
		    (vpc->pad_int_to_maxwidth ?
		     vpc->max_intermediate_width:vpc->intermediate_width),
		    vpc->image, vpc->image_width, vpc->image_height,
		    vpc->image_bytes_per_scan, vpc->warp_2d);
	break;
    case VP_BGR:
	ASSERT(color_channels == 3);
	VPWarpA330R(vpc->int_image.rgb_intim, vpc->intermediate_width,
		    vpc->intermediate_height, sizeof(RGBIntPixel) *
		    (vpc->pad_int_to_maxwidth ?
		     vpc->max_intermediate_width:vpc->intermediate_width),
		    vpc->image, vpc->image_width, vpc->image_height,
		    vpc->image_bytes_per_scan, vpc->warp_2d);
	break;
    case VP_ABGR:
	ASSERT(color_channels == 3);
	VPWarpA331R(vpc->int_image.rgb_intim, vpc->intermediate_width,
		    vpc->intermediate_height, sizeof(RGBIntPixel) *
		    (vpc->pad_int_to_maxwidth ?
		     vpc->max_intermediate_width:vpc->intermediate_width),
		    vpc->image, vpc->image_width, vpc->image_height,
		    vpc->image_bytes_per_scan, vpc->warp_2d);
	break;
    default:
	VPBug("bad pixel type");
    }
    GET_TIME(vpc, t1);
    STORE_TIME(vpc, VPTIMER_WARP, t0, t1);

    GET_TIME(vpc, tB);
    STORE_TIME(vpc, VPTIMER_RENDER, tA, tB);

#ifdef DUMP_SHADOW_VOLUME
    printf("Dumping shadow map images to shadow.dump....");
    fflush(stdout);
    if ((dump_fd = creat("shadow.dump", 0644)) < 0)
	VPBug("open failed");
    dump_value = vpc->shadow_width;
    write(dump_fd, &dump_value, sizeof(int));
    dump_value = vpc->shadow_height;
    write(dump_fd, &dump_value, sizeof(int));
    dump_value = kcount;
    write(dump_fd, &dump_value, sizeof(int));
    write(dump_fd, shadow_dump, vpc->shadow_width * vpc->shadow_height *
	  kcount);
    close(dump_fd);
    printf("\n");
    Dealloc(vpc, shadow_dump);
#endif

#ifdef DUMP_GRAY_VOLUME
    printf("Dumping grayscale intermediate images to gray.dump....");
    fflush(stdout);
    if ((dump_fd = creat("gray.dump", 0644)) < 0)
	VPBug("open failed");
    dump_value = vpc->intermediate_width;
    write(dump_fd, &dump_value, sizeof(int));
    dump_value = vpc->intermediate_height;
    write(dump_fd, &dump_value, sizeof(int));
    dump_value = kcount;
    write(dump_fd, &dump_value, sizeof(int));
    write(dump_fd, gray_dump, vpc->intermediate_width *
	  vpc->intermediate_height * kcount);
    close(dump_fd);
    printf("\n");
    Dealloc(vpc, gray_dump);
#endif
}

#ifdef DEBUG
/*
 * vpPrintRayPath
 *
 * Print a trace of the voxels that contribute to the pixel specified
 * with vpTracePixel.
 */

vpResult
vpPrintRayPath(vpc)
vpContext *vpc;
{
    int icount;			/* voxels per voxel scanline */
    int jcount;			/* voxel scanlines per voxel slice */
    int kcount;			/* voxel slices in the volume */
    int k;			/* voxel slice index */
    int kstart, kstop;		/* values of k for first and last slices */
    int kincr;			/* value to add to k to get to the next slice
				   (either 1 or -1) */
    float slice_u, slice_v;	/* sheared object space coordinates of the
				   top-left corner of the current constant-k
				   slice of the volume data */
    int slice_u_int;		/* integer part of slice_u and slice_v */
    int slice_v_int;
    float slice_u_frac;		/* fractional part of slice_u and slice_v */
    float slice_v_frac;
    float WgtTL, WgtBL,		/* weights in the range 0..1 which give the */
	  WgtTR, WgtBR;		/*   fractional contribution of the */
    				/*   neighboring voxels to the current */
    			        /*   intermediate image pixel */
    int i, j;			/* voxel coordinates in current slice of
				   the voxel to the BR of the ray */
    int shadow_trace_u;		/* coords. of shadow buffer pixel to trace */
    int shadow_trace_v;
    int retcode;

    /* check for errors and initialize */
    if ((retcode = VPFactorView(vpc)) != VP_OK)
	return(retcode);
    if (vpc->trace_u < 0 || vpc->trace_v < 0 ||
	vpc->trace_u >= vpc->intermediate_width ||
	vpc->trace_v >= vpc->intermediate_height) {
	printf("Traced pixel is out of bounds.\n");
	return(VP_OK);
    }

    /* find size of volume */
    switch (vpc->best_view_axis) {
    case VP_X_AXIS:
	icount = vpc->ylen;
	jcount = vpc->zlen;
	kcount = vpc->xlen;
	break;
    case VP_Y_AXIS:
	icount = vpc->zlen;
	jcount = vpc->xlen;
	kcount = vpc->ylen;
	break;
    case VP_Z_AXIS:
	icount = vpc->xlen;
	jcount = vpc->ylen;
	kcount = vpc->zlen;
	break;
    default:
	VPBug("invalid viewing axis in vpPrintRayPath");
    }

    /* print column headings */
    printf("Ray path for pixel u=%d, v=%d", vpc->trace_u, vpc->trace_v);
    if (vpc->enable_shadows)
	printf(", shadow_k=%d", vpc->trace_shadow_k);
    printf(" (View %c, slice size %d,%d)\n",
	   vpc->best_view_axis + 'X', icount, jcount);
    printf("Slice     TopLft            BotLft            TopRgt");
    printf("            BotRgt\n");
    printf("      _X_/_Y_/_Z_/Wgt   _X_/_Y_/_Z_/Wgt   _X_/_Y_/_Z_/Wgt");
    printf("   _X_/_Y_/_Z_/Wgt\n");

    /* compute outer loop bounds */
    if (vpc->reverse_slice_order) {
	kstart = kcount-1;
	kstop = -1;
	kincr = -1;
    } else {
	kstart = 0;
	kincr = 1;
	kstop = kcount;
    }

    /* loop over slices of the voxel data in front-to-back order */
    for (k = kstart; k != kstop; k += kincr) {
	/* compute coordinates of top-left corner of voxel slice in
	   intermediate image */
	slice_u = vpc->shear_i * k + vpc->trans_i;
	slice_v = vpc->shear_j * k + vpc->trans_j;
	slice_u_int = (int)ceil(slice_u) - 1;
	slice_v_int = (int)ceil(slice_v) - 1;

	/* compute resampling weights for this slice */
	slice_u_frac = slice_u - slice_u_int;
	slice_v_frac = slice_v - slice_v_int;
	WgtTL = slice_u_frac * slice_v_frac;
	WgtBL = slice_u_frac * ((float)1. - slice_v_frac);
	WgtTR = ((float)1. - slice_u_frac) * slice_v_frac;
	WgtBR = ((float)1. - slice_u_frac) * ((float)1. - slice_v_frac);

	/* compute intersection of the ray with this slice */
	i = vpc->trace_u - slice_u_int;
	j = vpc->trace_v - slice_v_int;

	/* print ray location at this slice */
	printf("[%3d]", k);
	switch (vpc->best_view_axis) {
	case VP_X_AXIS:
	    printf("%4d%4d%4d %3d  ", k, i-1, j-1, (int)(WgtTL*100.));
	    printf("%4d%4d%4d %3d  ", k, i-1,   j, (int)(WgtBL*100.));
	    printf("%4d%4d%4d %3d  ", k,   i, j-1, (int)(WgtTR*100.));
	    printf("%4d%4d%4d %3d\n", k,   i,   j, (int)(WgtBR*100.));
	    break;
	case VP_Y_AXIS:
	    printf("%4d%4d%4d %3d  ", j-1, k, i-1, (int)(WgtTL*100.));
	    printf("%4d%4d%4d %3d  ",   j, k, i-1, (int)(WgtBL*100.));
	    printf("%4d%4d%4d %3d  ", j-1, k,   i, (int)(WgtTR*100.));
	    printf("%4d%4d%4d %3d\n",   j, k,   i, (int)(WgtBR*100.));
	    break;
	case VP_Z_AXIS:
	    printf("%4d%4d%4d %3d  ", i-1, j-1, k, (int)(WgtTL*100.));
	    printf("%4d%4d%4d %3d  ", i-1, j,   k, (int)(WgtBL*100.));
	    printf("%4d%4d%4d %3d  ", i,   j-1, k, (int)(WgtTR*100.));
	    printf("%4d%4d%4d %3d\n", i,   j,   k, (int)(WgtBR*100.));
	    break;
	}
    } /* for k */

    if (!vpc->enable_shadows)
	return(VP_OK);

    /* compute coordinates of shadow buffer pixel to trace */
    shadow_trace_u = vpc->trace_u + 
	(int)ceil(vpc->shadow_shear_i*vpc->trace_shadow_k+vpc->shadow_trans_i)-
	(int)ceil(vpc->shear_i * vpc->trace_shadow_k + vpc->trans_i);
    shadow_trace_v = vpc->trace_v + 
	(int)ceil(vpc->shadow_shear_j*vpc->trace_shadow_k+vpc->shadow_trans_j)-
	(int)ceil(vpc->shear_j * vpc->trace_shadow_k + vpc->trans_j);

    /* print column headings for shadow trace */
    printf("\nShadow Ray Path (intersecting traced pixel at k=%d):\n",
	   vpc->trace_shadow_k);
    printf("Slice     TopLft            BotLft            TopRgt");
    printf("            BotRgt\n");
    printf("      _X_/_Y_/_Z_/Wgt   _X_/_Y_/_Z_/Wgt   _X_/_Y_/_Z_/Wgt");
    printf("   _X_/_Y_/_Z_/Wgt\n");

    /* loop over slices of the voxel data in front-to-back order */
    for (k = kstart; k != kstop; k += kincr) {
	/* compute coordinates of top-left corner of voxel slice in
	   intermediate image */
	slice_u = vpc->shadow_shear_i * k + vpc->shadow_trans_i;
	slice_v = vpc->shadow_shear_j * k + vpc->shadow_trans_j;
	slice_u_int = (int)ceil(slice_u) - 1;
	slice_v_int = (int)ceil(slice_v) - 1;

	/* compute resampling weights for this slice */
	slice_u_frac = slice_u - slice_u_int;
	slice_v_frac = slice_v - slice_v_int;
	WgtTL = slice_u_frac * slice_v_frac;
	WgtBL = slice_u_frac * ((float)1. - slice_v_frac);
	WgtTR = ((float)1. - slice_u_frac) * slice_v_frac;
	WgtBR = ((float)1. - slice_u_frac) * ((float)1. - slice_v_frac);

	/* compute intersection of the ray with this slice */
	i = shadow_trace_u - slice_u_int;
	j = shadow_trace_v - slice_v_int;

	/* print ray location at this slice */
	printf("[%3d]", k);
	switch (vpc->best_view_axis) {
	case VP_X_AXIS:
	    printf("%4d%4d%4d %3d  ", k, i-1, j-1, (int)(WgtTL*100.));
	    printf("%4d%4d%4d %3d  ", k, i-1,   j, (int)(WgtBL*100.));
	    printf("%4d%4d%4d %3d  ", k,   i, j-1, (int)(WgtTR*100.));
	    printf("%4d%4d%4d %3d\n", k,   i,   j, (int)(WgtBR*100.));
	    break;
	case VP_Y_AXIS:
	    printf("%4d%4d%4d %3d  ", j-1, k, i-1, (int)(WgtTL*100.));
	    printf("%4d%4d%4d %3d  ",   j, k, i-1, (int)(WgtBL*100.));
	    printf("%4d%4d%4d %3d  ", j-1, k,   i, (int)(WgtTR*100.));
	    printf("%4d%4d%4d %3d\n",   j, k,   i, (int)(WgtBR*100.));
	    break;
	case VP_Z_AXIS:
	    printf("%4d%4d%4d %3d  ", i-1, j-1, k, (int)(WgtTL*100.));
	    printf("%4d%4d%4d %3d  ", i-1, j,   k, (int)(WgtBL*100.));
	    printf("%4d%4d%4d %3d  ", i,   j-1, k, (int)(WgtTR*100.));
	    printf("%4d%4d%4d %3d\n", i,   j,   k, (int)(WgtBR*100.));
	    break;
	}
    } /* for k */
    return(VP_OK);
}
#endif /* DEBUG */