File: PKG-INFO

package info (click to toggle)
voluptuous 0.11.7-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 340 kB
  • sloc: python: 2,266; makefile: 5
file content (744 lines) | stat: -rw-r--r-- 24,989 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
Metadata-Version: 2.1
Name: voluptuous
Version: 0.11.7
Summary: # Voluptuous is a Python data validation library
Home-page: https://github.com/alecthomas/voluptuous
Author: Alec Thomas
Author-email: alec@swapoff.org
License: BSD
Download-URL: https://pypi.python.org/pypi/voluptuous
Description: # Voluptuous is a Python data validation library
        
        [![Build Status](https://travis-ci.org/alecthomas/voluptuous.svg)](https://travis-ci.org/alecthomas/voluptuous)
        [![Coverage Status](https://coveralls.io/repos/github/alecthomas/voluptuous/badge.svg?branch=master)](https://coveralls.io/github/alecthomas/voluptuous?branch=master) [![Gitter chat](https://badges.gitter.im/alecthomas.svg)](https://gitter.im/alecthomas/Lobby)
        
        Voluptuous, *despite* the name, is a Python data validation library. It
        is primarily intended for validating data coming into Python as JSON,
        YAML, etc.
        
        It has three goals:
        
        1.  Simplicity.
        2.  Support for complex data structures.
        3.  Provide useful error messages.
        
        ## Contact
        
        Voluptuous now has a mailing list! Send a mail to
        [<voluptuous@librelist.com>](mailto:voluptuous@librelist.com) to subscribe. Instructions
        will follow.
        
        You can also contact me directly via [email](mailto:alec@swapoff.org) or
        [Twitter](https://twitter.com/alecthomas).
        
        To file a bug, create a [new issue](https://github.com/alecthomas/voluptuous/issues/new) on GitHub with a short example of how to replicate the issue.
        
        ## Documentation
        
        The documentation is provided [here](http://alecthomas.github.io/voluptuous/).
        
        ## Changelog
        
        See [CHANGELOG.md](https://github.com/alecthomas/voluptuous/blob/master/CHANGELOG.md).
        
        ## Show me an example
        
        Twitter's [user search API](https://dev.twitter.com/rest/reference/get/users/search) accepts
        query URLs like:
        
        ```
        $ curl 'https://api.twitter.com/1.1/users/search.json?q=python&per_page=20&page=1'
        ```
        
        To validate this we might use a schema like:
        
        ```pycon
        >>> from voluptuous import Schema
        >>> schema = Schema({
        ...   'q': str,
        ...   'per_page': int,
        ...   'page': int,
        ... })
        
        ```
        
        This schema very succinctly and roughly describes the data required by
        the API, and will work fine. But it has a few problems. Firstly, it
        doesn't fully express the constraints of the API. According to the API,
        `per_page` should be restricted to at most 20, defaulting to 5, for
        example. To describe the semantics of the API more accurately, our
        schema will need to be more thoroughly defined:
        
        ```pycon
        >>> from voluptuous import Required, All, Length, Range
        >>> schema = Schema({
        ...   Required('q'): All(str, Length(min=1)),
        ...   Required('per_page', default=5): All(int, Range(min=1, max=20)),
        ...   'page': All(int, Range(min=0)),
        ... })
        
        ```
        
        This schema fully enforces the interface defined in Twitter's
        documentation, and goes a little further for completeness.
        
        "q" is required:
        
        ```pycon
        >>> from voluptuous import MultipleInvalid, Invalid
        >>> try:
        ...   schema({})
        ...   raise AssertionError('MultipleInvalid not raised')
        ... except MultipleInvalid as e:
        ...   exc = e
        >>> str(exc) == "required key not provided @ data['q']"
        True
        
        ```
        
        ...must be a string:
        
        ```pycon
        >>> try:
        ...   schema({'q': 123})
        ...   raise AssertionError('MultipleInvalid not raised')
        ... except MultipleInvalid as e:
        ...   exc = e
        >>> str(exc) == "expected str for dictionary value @ data['q']"
        True
        
        ```
        
        ...and must be at least one character in length:
        
        ```pycon
        >>> try:
        ...   schema({'q': ''})
        ...   raise AssertionError('MultipleInvalid not raised')
        ... except MultipleInvalid as e:
        ...   exc = e
        >>> str(exc) == "length of value must be at least 1 for dictionary value @ data['q']"
        True
        >>> schema({'q': '#topic'}) == {'q': '#topic', 'per_page': 5}
        True
        
        ```
        
        "per\_page" is a positive integer no greater than 20:
        
        ```pycon
        >>> try:
        ...   schema({'q': '#topic', 'per_page': 900})
        ...   raise AssertionError('MultipleInvalid not raised')
        ... except MultipleInvalid as e:
        ...   exc = e
        >>> str(exc) == "value must be at most 20 for dictionary value @ data['per_page']"
        True
        >>> try:
        ...   schema({'q': '#topic', 'per_page': -10})
        ...   raise AssertionError('MultipleInvalid not raised')
        ... except MultipleInvalid as e:
        ...   exc = e
        >>> str(exc) == "value must be at least 1 for dictionary value @ data['per_page']"
        True
        
        ```
        
        "page" is an integer \>= 0:
        
        ```pycon
        >>> try:
        ...   schema({'q': '#topic', 'per_page': 'one'})
        ...   raise AssertionError('MultipleInvalid not raised')
        ... except MultipleInvalid as e:
        ...   exc = e
        >>> str(exc)
        "expected int for dictionary value @ data['per_page']"
        >>> schema({'q': '#topic', 'page': 1}) == {'q': '#topic', 'page': 1, 'per_page': 5}
        True
        
        ```
        
        ## Defining schemas
        
        Schemas are nested data structures consisting of dictionaries, lists,
        scalars and *validators*. Each node in the input schema is pattern
        matched against corresponding nodes in the input data.
        
        ### Literals
        
        Literals in the schema are matched using normal equality checks:
        
        ```pycon
        >>> schema = Schema(1)
        >>> schema(1)
        1
        >>> schema = Schema('a string')
        >>> schema('a string')
        'a string'
        
        ```
        
        ### Types
        
        Types in the schema are matched by checking if the corresponding value
        is an instance of the type:
        
        ```pycon
        >>> schema = Schema(int)
        >>> schema(1)
        1
        >>> try:
        ...   schema('one')
        ...   raise AssertionError('MultipleInvalid not raised')
        ... except MultipleInvalid as e:
        ...   exc = e
        >>> str(exc) == "expected int"
        True
        
        ```
        
        ### URLs
        
        URLs in the schema are matched by using `urlparse` library.
        
        ```pycon
        >>> from voluptuous import Url
        >>> schema = Schema(Url())
        >>> schema('http://w3.org')
        'http://w3.org'
        >>> try:
        ...   schema('one')
        ...   raise AssertionError('MultipleInvalid not raised')
        ... except MultipleInvalid as e:
        ...   exc = e
        >>> str(exc) == "expected a URL"
        True
        
        ```
        
        ### Lists
        
        Lists in the schema are treated as a set of valid values. Each element
        in the schema list is compared to each value in the input data:
        
        ```pycon
        >>> schema = Schema([1, 'a', 'string'])
        >>> schema([1])
        [1]
        >>> schema([1, 1, 1])
        [1, 1, 1]
        >>> schema(['a', 1, 'string', 1, 'string'])
        ['a', 1, 'string', 1, 'string']
        
        ```
        
        However, an empty list (`[]`) is treated as is. If you want to specify a list that can
        contain anything, specify it as `list`:
        
        ```pycon
        >>> schema = Schema([])
        >>> try:
        ...   schema([1])
        ...   raise AssertionError('MultipleInvalid not raised')
        ... except MultipleInvalid as e:
        ...   exc = e
        >>> str(exc) == "not a valid value @ data[1]"
        True
        >>> schema([])
        []
        >>> schema = Schema(list)
        >>> schema([])
        []
        >>> schema([1, 2])
        [1, 2]
        
        ```
        
        ### Sets and frozensets
        
        Sets and frozensets are treated as a set of valid values. Each element
        in the schema set is compared to each value in the input data:
        
        ```pycon
        >>> schema = Schema({42})
        >>> schema({42}) == {42}
        True
        >>> try:
        ...   schema({43})
        ...   raise AssertionError('MultipleInvalid not raised')
        ... except MultipleInvalid as e:
        ...   exc = e
        >>> str(exc) == "invalid value in set"
        True
        >>> schema = Schema({int})
        >>> schema({1, 2, 3}) == {1, 2, 3}
        True
        >>> schema = Schema({int, str})
        >>> schema({1, 2, 'abc'}) == {1, 2, 'abc'}
        True
        >>> schema = Schema(frozenset([int]))
        >>> try:
        ...   schema({3})
        ...   raise AssertionError('Invalid not raised')
        ... except Invalid as e:
        ...   exc = e
        >>> str(exc) == 'expected a frozenset'
        True
        
        ```
        
        However, an empty set (`set()`) is treated as is. If you want to specify a set
        that can contain anything, specify it as `set`:
        
        ```pycon
        >>> schema = Schema(set())
        >>> try:
        ...   schema({1})
        ...   raise AssertionError('MultipleInvalid not raised')
        ... except MultipleInvalid as e:
        ...   exc = e
        >>> str(exc) == "invalid value in set"
        True
        >>> schema(set()) == set()
        True
        >>> schema = Schema(set)
        >>> schema({1, 2}) == {1, 2}
        True
        
        ```
        
        ### Validation functions
        
        Validators are simple callables that raise an `Invalid` exception when
        they encounter invalid data. The criteria for determining validity is
        entirely up to the implementation; it may check that a value is a valid
        username with `pwd.getpwnam()`, it may check that a value is of a
        specific type, and so on.
        
        The simplest kind of validator is a Python function that raises
        ValueError when its argument is invalid. Conveniently, many builtin
        Python functions have this property. Here's an example of a date
        validator:
        
        ```pycon
        >>> from datetime import datetime
        >>> def Date(fmt='%Y-%m-%d'):
        ...   return lambda v: datetime.strptime(v, fmt)
        
        ```
        
        ```pycon
        >>> schema = Schema(Date())
        >>> schema('2013-03-03')
        datetime.datetime(2013, 3, 3, 0, 0)
        >>> try:
        ...   schema('2013-03')
        ...   raise AssertionError('MultipleInvalid not raised')
        ... except MultipleInvalid as e:
        ...   exc = e
        >>> str(exc) == "not a valid value"
        True
        
        ```
        
        In addition to simply determining if a value is valid, validators may
        mutate the value into a valid form. An example of this is the
        `Coerce(type)` function, which returns a function that coerces its
        argument to the given type:
        
        ```python
        def Coerce(type, msg=None):
            """Coerce a value to a type.
        
            If the type constructor throws a ValueError, the value will be marked as
            Invalid.
            """
            def f(v):
                try:
                    return type(v)
                except ValueError:
                    raise Invalid(msg or ('expected %s' % type.__name__))
            return f
        
        ```
        
        This example also shows a common idiom where an optional human-readable
        message can be provided. This can vastly improve the usefulness of the
        resulting error messages.
        
        ### Dictionaries
        
        Each key-value pair in a schema dictionary is validated against each
        key-value pair in the corresponding data dictionary:
        
        ```pycon
        >>> schema = Schema({1: 'one', 2: 'two'})
        >>> schema({1: 'one'})
        {1: 'one'}
        
        ```
        
        #### Extra dictionary keys
        
        By default any additional keys in the data, not in the schema will
        trigger exceptions:
        
        ```pycon
        >>> schema = Schema({2: 3})
        >>> try:
        ...   schema({1: 2, 2: 3})
        ...   raise AssertionError('MultipleInvalid not raised')
        ... except MultipleInvalid as e:
        ...   exc = e
        >>> str(exc) == "extra keys not allowed @ data[1]"
        True
        
        ```
        
        This behaviour can be altered on a per-schema basis. To allow
        additional keys use
        `Schema(..., extra=ALLOW_EXTRA)`:
        
        ```pycon
        >>> from voluptuous import ALLOW_EXTRA
        >>> schema = Schema({2: 3}, extra=ALLOW_EXTRA)
        >>> schema({1: 2, 2: 3})
        {1: 2, 2: 3}
        
        ```
        
        To remove additional keys use
        `Schema(..., extra=REMOVE_EXTRA)`:
        
        ```pycon
        >>> from voluptuous import REMOVE_EXTRA
        >>> schema = Schema({2: 3}, extra=REMOVE_EXTRA)
        >>> schema({1: 2, 2: 3})
        {2: 3}
        
        ```
        
        It can also be overridden per-dictionary by using the catch-all marker
        token `extra` as a key:
        
        ```pycon
        >>> from voluptuous import Extra
        >>> schema = Schema({1: {Extra: object}})
        >>> schema({1: {'foo': 'bar'}})
        {1: {'foo': 'bar'}}
        
        ```
        
        #### Required dictionary keys
        
        By default, keys in the schema are not required to be in the data:
        
        ```pycon
        >>> schema = Schema({1: 2, 3: 4})
        >>> schema({3: 4})
        {3: 4}
        
        ```
        
        Similarly to how extra\_ keys work, this behaviour can be overridden
        per-schema:
        
        ```pycon
        >>> schema = Schema({1: 2, 3: 4}, required=True)
        >>> try:
        ...   schema({3: 4})
        ...   raise AssertionError('MultipleInvalid not raised')
        ... except MultipleInvalid as e:
        ...   exc = e
        >>> str(exc) == "required key not provided @ data[1]"
        True
        
        ```
        
        And per-key, with the marker token `Required(key)`:
        
        ```pycon
        >>> schema = Schema({Required(1): 2, 3: 4})
        >>> try:
        ...   schema({3: 4})
        ...   raise AssertionError('MultipleInvalid not raised')
        ... except MultipleInvalid as e:
        ...   exc = e
        >>> str(exc) == "required key not provided @ data[1]"
        True
        >>> schema({1: 2})
        {1: 2}
        
        ```
        
        #### Optional dictionary keys
        
        If a schema has `required=True`, keys may be individually marked as
        optional using the marker token `Optional(key)`:
        
        ```pycon
        >>> from voluptuous import Optional
        >>> schema = Schema({1: 2, Optional(3): 4}, required=True)
        >>> try:
        ...   schema({})
        ...   raise AssertionError('MultipleInvalid not raised')
        ... except MultipleInvalid as e:
        ...   exc = e
        >>> str(exc) == "required key not provided @ data[1]"
        True
        >>> schema({1: 2})
        {1: 2}
        >>> try:
        ...   schema({1: 2, 4: 5})
        ...   raise AssertionError('MultipleInvalid not raised')
        ... except MultipleInvalid as e:
        ...   exc = e
        >>> str(exc) == "extra keys not allowed @ data[4]"
        True
        
        ```
        
        ```pycon
        >>> schema({1: 2, 3: 4})
        {1: 2, 3: 4}
        
        ```
        
        ### Recursive / nested schema
        
        You can use `voluptuous.Self` to define a nested schema:
        
        ```pycon
        >>> from voluptuous import Schema, Self
        >>> recursive = Schema({"more": Self, "value": int})
        >>> recursive({"more": {"value": 42}, "value": 41}) == {'more': {'value': 42}, 'value': 41}
        True
        
        ```
        
        ### Extending an existing Schema
        
        Often it comes handy to have a base `Schema` that is extended with more
        requirements. In that case you can use `Schema.extend` to create a new
        `Schema`:
        
        ```pycon
        >>> from voluptuous import Schema
        >>> person = Schema({'name': str})
        >>> person_with_age = person.extend({'age': int})
        >>> sorted(list(person_with_age.schema.keys()))
        ['age', 'name']
        
        ```
        
        The original `Schema` remains unchanged.
        
        ### Objects
        
        Each key-value pair in a schema dictionary is validated against each
        attribute-value pair in the corresponding object:
        
        ```pycon
        >>> from voluptuous import Object
        >>> class Structure(object):
        ...     def __init__(self, q=None):
        ...         self.q = q
        ...     def __repr__(self):
        ...         return '<Structure(q={0.q!r})>'.format(self)
        ...
        >>> schema = Schema(Object({'q': 'one'}, cls=Structure))
        >>> schema(Structure(q='one'))
        <Structure(q='one')>
        
        ```
        
        ### Allow None values
        
        To allow value to be None as well, use Any:
        
        ```pycon
        >>> from voluptuous import Any
        
        >>> schema = Schema(Any(None, int))
        >>> schema(None)
        >>> schema(5)
        5
        
        ```
        
        ## Error reporting
        
        Validators must throw an `Invalid` exception if invalid data is passed
        to them. All other exceptions are treated as errors in the validator and
        will not be caught.
        
        Each `Invalid` exception has an associated `path` attribute representing
        the path in the data structure to our currently validating value, as well
        as an `error_message` attribute that contains the message of the original
        exception. This is especially useful when you want to catch `Invalid`
        exceptions and give some feedback to the user, for instance in the context of
        an HTTP API.
        
        
        ```pycon
        >>> def validate_email(email):
        ...     """Validate email."""
        ...     if not "@" in email:
        ...         raise Invalid("This email is invalid.")
        ...     return email
        >>> schema = Schema({"email": validate_email})
        >>> exc = None
        >>> try:
        ...     schema({"email": "whatever"})
        ... except MultipleInvalid as e:
        ...     exc = e
        >>> str(exc)
        "This email is invalid. for dictionary value @ data['email']"
        >>> exc.path
        ['email']
        >>> exc.msg
        'This email is invalid.'
        >>> exc.error_message
        'This email is invalid.'
        
        ```
        
        The `path` attribute is used during error reporting, but also during matching
        to determine whether an error should be reported to the user or if the next
        match should be attempted. This is determined by comparing the depth of the
        path where the check is, to the depth of the path where the error occurred. If
        the error is more than one level deeper, it is reported.
        
        The upshot of this is that *matching is depth-first and fail-fast*.
        
        To illustrate this, here is an example schema:
        
        ```pycon
        >>> schema = Schema([[2, 3], 6])
        
        ```
        
        Each value in the top-level list is matched depth-first in-order. Given
        input data of `[[6]]`, the inner list will match the first element of
        the schema, but the literal `6` will not match any of the elements of
        that list. This error will be reported back to the user immediately. No
        backtracking is attempted:
        
        ```pycon
        >>> try:
        ...   schema([[6]])
        ...   raise AssertionError('MultipleInvalid not raised')
        ... except MultipleInvalid as e:
        ...   exc = e
        >>> str(exc) == "not a valid value @ data[0][0]"
        True
        
        ```
        
        If we pass the data `[6]`, the `6` is not a list type and so will not
        recurse into the first element of the schema. Matching will continue on
        to the second element in the schema, and succeed:
        
        ```pycon
        >>> schema([6])
        [6]
        
        ```
        
        ## Multi-field validation
        
        Validation rules that involve multiple fields can be implemented as
        custom validators. It's recommended to use `All()` to do a two-pass
        validation - the first pass checking the basic structure of the data,
        and only after that, the second pass applying your cross-field
        validator:
        
        ```python
        def passwords_must_match(passwords):
            if passwords['password'] != passwords['password_again']:
                raise Invalid('passwords must match')
            return passwords
        
        s=Schema(All(
            # First "pass" for field types
            {'password':str, 'password_again':str},
            # Follow up the first "pass" with your multi-field rules
            passwords_must_match
        ))
        
        # valid
        s({'password':'123', 'password_again':'123'})
        
        # raises MultipleInvalid: passwords must match
        s({'password':'123', 'password_again':'and now for something completely different'})
        
        ```
        
        With this structure, your multi-field validator will run with
        pre-validated data from the first "pass" and so will not have to do
        its own type checking on its inputs.
        
        The flipside is that if the first "pass" of validation fails, your
        cross-field validator will not run:
        
        ```
        # raises Invalid because password_again is not a string
        # passwords_must_match() will not run because first-pass validation already failed
        s({'password':'123', 'password_again': 1337})
        ```
        
        ## Running tests.
        
        Voluptuous is using nosetests:
        
            $ nosetests
        
        
        ## Why use Voluptuous over another validation library?
        
        **Validators are simple callables**
        :   No need to subclass anything, just use a function.
        
        **Errors are simple exceptions.**
        :   A validator can just `raise Invalid(msg)` and expect the user to get
        useful messages.
        
        **Schemas are basic Python data structures.**
        :   Should your data be a dictionary of integer keys to strings?
        `{int: str}` does what you expect. List of integers, floats or
        strings? `[int, float, str]`.
        
        **Designed from the ground up for validating more than just forms.**
        :   Nested data structures are treated in the same way as any other
        type. Need a list of dictionaries? `[{}]`
        
        **Consistency.**
        :   Types in the schema are checked as types. Values are compared as
        values. Callables are called to validate. Simple.
        
        ## Other libraries and inspirations
        
        Voluptuous is heavily inspired by
        [Validino](http://code.google.com/p/validino/), and to a lesser extent,
        [jsonvalidator](http://code.google.com/p/jsonvalidator/) and
        [json\_schema](http://blog.sendapatch.se/category/json_schema.html).
        
        [pytest-voluptuous](https://github.com/F-Secure/pytest-voluptuous) is a
        [pytest](https://github.com/pytest-dev/pytest) plugin that helps in
        using voluptuous validators in `assert`s.
        
        I greatly prefer the light-weight style promoted by these libraries to
        the complexity of libraries like FormEncode.
        
Platform: any
Classifier: Development Status :: 5 - Production/Stable
Classifier: Intended Audience :: Developers
Classifier: License :: OSI Approved :: BSD License
Classifier: Operating System :: OS Independent
Classifier: Programming Language :: Python :: 2
Classifier: Programming Language :: Python :: 2.7
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3.6
Classifier: Programming Language :: Python :: 3.7
Description-Content-Type: text/markdown