File: itkImageFunctionConditionalPathConstIterator.txx

package info (click to toggle)
volview 3.4-3
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 25,204 kB
  • sloc: cpp: 132,585; ansic: 11,612; tcl: 236; sh: 64; makefile: 25; xml: 8
file content (337 lines) | stat: -rw-r--r-- 9,437 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
/*=========================================================================

  Copyright (c) Kitware, Inc.
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/VolViewCopyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
#ifndef __itkImageFunctionConditionalPathConstIterator_txx
#define __itkImageFunctionConditionalPathConstIterator_txx

#include "itkImageFunctionConditionalPathConstIterator.h"
#include "itkImageRegionConstIterator.h"

namespace itk
{

template<class TImage, class TFunction>
ImageFunctionConditionalPathConstIterator<TImage, TFunction>
::ImageFunctionConditionalPathConstIterator(const ImageType *imagePtr,
      FunctionType *fnPtr, PointContainerType & targetPoints, double searchRadius ) :
  m_FullyConnected(false)
{
  m_HasReachedTarget = false;
  this->m_Image = imagePtr;
  m_Function = fnPtr;
  m_StartIndices.clear();
  m_SearchRadius = searchRadius;
  m_SearchRadiusSquared = m_SearchRadius * m_SearchRadius;

  m_TargetPoints = targetPoints;
  const unsigned int n = m_TargetPoints.size();
  m_TargetIndices.resize(n);

  IndexType index;
  for (int i = 0 ; i < n; i++)
    {
    this->m_Image->TransformPhysicalPointToIndex( m_TargetPoints[i], index );
    m_TargetIndices[i] = index;
    std::cout << "Target index " << i << " = " << m_TargetIndices[i] << std::endl;
    }

  // Set up the temporary image
  this->InitializeIterator();
}  


template<class TImage, class TFunction>
void
ImageFunctionConditionalPathConstIterator<TImage, TFunction>
::AllocateTempImage()
{
  // Build a temporary image of chars for use in the flood algorithm. We will
  // allocate a region that's Min( SearchBBox, ImageRegion )
  m_TempPtr = TTempImage::New();

  SizeType size;
  IndexType index;
  index.Fill(0);
  for (unsigned int i = 0; i < NDimensions; i++)
    {
    size[i] = static_cast< unsigned int >((2 * m_SearchRadius) / m_ImageSpacing[i] + 3.5);
    index[i] = -1 * static_cast< IndexValueType >(m_SearchRadius/ m_ImageSpacing[i] + 1 );
    }

  RegionType region( index, size );

  m_TempPtr->SetLargestPossibleRegion( region );
  m_TempPtr->SetBufferedRegion( region );
  m_TempPtr->SetRequestedRegion( region );
  m_TempPtr->Allocate();
}

template<class TImage, class TFunction>
void
ImageFunctionConditionalPathConstIterator<TImage, TFunction>
::InitializeIterator()
{
  // Get the origin and spacing from the image in simple arrays
  m_ImageOrigin  = this->m_Image->GetOrigin();
  m_ImageSpacing = this->m_Image->GetSpacing();
  m_ImageRegion  = this->m_Image->GetBufferedRegion();
  
  // Build and setup the neighborhood iterator
  typename NeighborhoodIteratorType::RadiusType radius; radius.Fill(1);
  
  NeighborhoodIteratorType tmp_iter(radius, this->m_Image, m_ImageRegion);
  m_NeighborhoodIterator = tmp_iter;
  
  setConnectivity(&m_NeighborhoodIterator, m_FullyConnected);

  this->AllocateTempImage();
}


template<class TImage, class TFunction>
bool
ImageFunctionConditionalPathConstIterator<TImage, TFunction>
::IsNotFilled( const IndexType & index )
{
  for (unsigned int i = 0; i < NDimensions; i++)
    {
    m_TempIndex[i] = index[i] - m_SourceIndex[i];
    }

  return (m_TempPtr->GetPixel( m_TempIndex ) == 0);
}


template<class TImage, class TFunction>
void
ImageFunctionConditionalPathConstIterator<TImage, TFunction>
::Fill( const IndexType & index )
{
  for (unsigned int i = 0; i < NDimensions; i++)
    {
    m_TempIndex[i] = index[i] - m_SourceIndex[i];
    }

  m_TempPtr->SetPixel( m_TempIndex, 2 );
}


template<class TImage, class TFunction>
void
ImageFunctionConditionalPathConstIterator<TImage, TFunction>
::Remove( const IndexType & index )
{
  for (unsigned int i = 0; i < NDimensions; i++)
    {
    m_TempIndex[i] = index[i] - m_SourceIndex[i];
    }

  m_TempPtr->SetPixel( m_TempIndex, 1 );
}


template<class TImage, class TFunction>
bool
ImageFunctionConditionalPathConstIterator<TImage, TFunction>
::IsWithinSearchRadius( const IndexType & index )
{
  this->m_Image->TransformIndexToPhysicalPoint(index, m_TempPoint);
  m_TempVector = m_TempPoint - m_SourcePoint;
  return (m_TempVector.GetSquaredNorm() <= m_SearchRadiusSquared);
}

template<class TImage, class TFunction>
void
ImageFunctionConditionalPathConstIterator<TImage, TFunction>
::SetSourcePoint( const PointType & point )
{
  m_StartIndices.clear();
  m_SourcePoint = point;
  this->m_Image->TransformPhysicalPointToIndex(point, m_SourceIndex);
  m_StartIndices.push_back(m_SourceIndex);
}

template<class TImage, class TFunction>
bool
ImageFunctionConditionalPathConstIterator<TImage, TFunction>
::IsAtTarget( const IndexType & index )
{
  for (IndexConstIteratorType it = m_TargetIndices.begin();
       it != m_TargetIndices.end(); 
       ++it )
    {
    if (*it == index)
      {

      // The inner loop is to avoid extra increments in the outer loop
      // which is performed thousands of times. This inner loop will
      // at most be performed once.. hence this code bloat.
      m_TargetId = 0;
      for (IndexConstIteratorType it2 = m_TargetIndices.begin();
           it2 != m_TargetIndices.end(); ++it2, ++m_TargetId )
        {
        //std::cout << m_TargetPoints[m_TargetId] << std::endl;
        if (*it2 == index)
          {
          this->m_IsAtEnd = true;
          this->m_HasReachedTarget = true;
          this->m_TargetIndex = index;
          this->m_TargetPoint = m_TargetPoints[m_TargetId];
          return true;
          }
        }

      }
    }

  return false;
}


template<class TImage, class TFunction>
void
ImageFunctionConditionalPathConstIterator<TImage, TFunction>
::DoFloodStep()
{
  // The index in the front of the queue should always be
  // valid and be inside since this is what the iterator
  // uses in the Set/Get methods. This is ensured by the
  // GoToBegin() method.

  // Take the index in the front of the queue  
  const IndexType & topIndex = m_IndexStack.front();

  if (this->IsAtTarget(topIndex))
    {
    // Clear the queue
    while (!m_IndexStack.empty())
      {
      m_IndexStack.pop();
      }

    return;
    }
  
  
  // We are explicitly not calling set location since only offsets of
  // the neighborhood iterator are accessed.
  typename NeighborhoodIteratorType::ConstIterator neighborIt =
    m_NeighborhoodIterator.Begin();
  const typename NeighborhoodIteratorType::ConstIterator neighborEnd =
    m_NeighborhoodIterator.End();
  
  for (; neighborIt != neighborEnd; ++neighborIt)
    {
    const OffsetType& offset = neighborIt.GetNeighborhoodOffset();
    const IndexType tempIndex = topIndex + offset;

    // If this is a valid index and have not been tested,
    // then test it.
    if ( m_ImageRegion.IsInside( tempIndex )
         && this->IsWithinSearchRadius(tempIndex) )
      {
      if ( this->IsNotFilled(tempIndex) )
        {
        // if it is inside, push it into the queue  
        if ( this->IsPixelIncluded( tempIndex ) )
          {
          m_IndexStack.push( tempIndex );
          this->Fill( tempIndex ); 
          }
        else  // If the pixel is outside
          {
          // Mark the pixel as outside and remove it from the queue.
          this->Remove( tempIndex );
          }
        }
      }
    } // Finished traversing neighbors
    
  // Now that all the potential neighbors have been 
  // inserted we can get rid of the pixel in the front
  m_IndexStack.pop();
    
  if( m_IndexStack.empty() )
    {
    this->m_IsAtEnd = true;
    }

}

template<class TImage, class TFunction>
void
ImageFunctionConditionalPathConstIterator<TImage, TFunction>
::SetFullyConnected(const bool _arg)
{
  if (this->m_FullyConnected != _arg)
    {
    this->m_FullyConnected = _arg;
    setConnectivity(&m_NeighborhoodIterator, m_FullyConnected);
    }
}

template<class TImage, class TFunction>
bool
ImageFunctionConditionalPathConstIterator<TImage, TFunction>
::GetFullyConnected() const
{
  return this->m_FullyConnected;
}

template<class TImage, class TFunction>
void
ImageFunctionConditionalPathConstIterator<TImage, TFunction>
::GoToBegin()
{
  // Clear the queue
  while (!m_IndexStack.empty())
    {
    m_IndexStack.pop();
    }

  this->m_IsAtEnd = true;
  // Initialize the temporary image
  m_TempPtr->FillBuffer(
    NumericTraits<ITK_TYPENAME TTempImage::PixelType>::Zero
    );
  
  for ( unsigned int i = 0; i < m_StartIndices.size(); i++ )
    {
    if( this->m_Image->GetBufferedRegion().IsInside ( m_StartIndices[i] ) &&
        this->IsPixelIncluded(m_StartIndices[i]) )
      {
      // Push the seed onto the queue
      m_IndexStack.push(m_StartIndices[i]);
      
      // Obviously, we're at the beginning
      this->m_IsAtEnd = false;
      
      // Mark the start index in the temp image as inside the
      // function, neighbor check incomplete
      this->Fill(m_StartIndices[i]);
      }
    }
}

template<class TImage, class TFunction>
bool
ImageFunctionConditionalPathConstIterator<TImage, TFunction>
::IsPixelIncluded(const IndexType & index) const
{
  if (this->m_Function->EvaluateAtIndex(index))
    std::cout << index << " " << this->m_Image->GetPixel(index) << std::endl;
  return this->m_Function->EvaluateAtIndex(index);
}

} // end namespace itk

#endif