1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
|
/*=========================================================================
Copyright (c) Kitware, Inc.
All rights reserved.
See Copyright.txt or http://www.kitware.com/VolViewCopyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#ifndef __itkLesionSegmentationImageFilter7_txx
#define __itkLesionSegmentationImageFilter7_txx
#include "itkLesionSegmentationImageFilter7.h"
#include "itkNumericTraits.h"
#include "itkProgressReporter.h"
#include "itkGradientMagnitudeImageFilter.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
namespace itk
{
template <class TInputImage, class TOutputImage>
LesionSegmentationImageFilter7<TInputImage, TOutputImage>::
LesionSegmentationImageFilter7()
{
m_GradientMagnitudeSigmoidFeatureGenerator = GradientMagnitudeSigmoidGeneratorType::New();
m_LesionSegmentationMethod = LesionSegmentationMethodType::New();
m_LungWallFeatureGenerator = LungWallGeneratorType::New();
m_VesselnessFeatureGenerator = VesselnessGeneratorType::New();
m_SigmoidFeatureGenerator = SigmoidFeatureGeneratorType::New();
m_FeatureAggregator = FeatureAggregatorType::New();
m_SegmentationModule = SegmentationModuleType::New();
m_CropFilter = CropFilterType::New();
m_InputSpatialObject = InputImageSpatialObjectType::New();
// Report progress.
m_CommandObserver = CommandType::New();
m_CommandObserver->SetCallbackFunction(
this, &Self::ProgressUpdate );
m_LungWallFeatureGenerator->AddObserver(
itk::ProgressEvent(), m_CommandObserver );
m_SigmoidFeatureGenerator->AddObserver(
itk::ProgressEvent(), m_CommandObserver );
m_VesselnessFeatureGenerator->AddObserver(
itk::ProgressEvent(), m_CommandObserver );
m_GradientMagnitudeSigmoidFeatureGenerator->AddObserver(
itk::ProgressEvent(), m_CommandObserver );
m_SegmentationModule->AddObserver(
itk::ProgressEvent(), m_CommandObserver );
m_CropFilter->AddObserver(
itk::ProgressEvent(), m_CommandObserver );
// Connect pipeline
m_LungWallFeatureGenerator->SetInput( m_InputSpatialObject );
m_SigmoidFeatureGenerator->SetInput( m_InputSpatialObject );
m_VesselnessFeatureGenerator->SetInput( m_InputSpatialObject );
m_GradientMagnitudeSigmoidFeatureGenerator->SetInput( m_InputSpatialObject );
m_FeatureAggregator->AddFeatureGenerator( m_LungWallFeatureGenerator );
m_FeatureAggregator->AddFeatureGenerator( m_VesselnessFeatureGenerator );
m_FeatureAggregator->AddFeatureGenerator( m_SigmoidFeatureGenerator );
m_FeatureAggregator->AddFeatureGenerator( m_GradientMagnitudeSigmoidFeatureGenerator );
m_LesionSegmentationMethod->AddFeatureGenerator( m_FeatureAggregator );
m_LesionSegmentationMethod->SetSegmentationModule( m_SegmentationModule );
// Populate some parameters
m_LungWallFeatureGenerator->SetLungThreshold( -400 );
m_VesselnessFeatureGenerator->SetSigma( 1.0 );
m_VesselnessFeatureGenerator->SetAlpha1( 0.5 );
m_VesselnessFeatureGenerator->SetAlpha2( 2.0 );
m_SigmoidFeatureGenerator->SetAlpha( 1.0 );
m_GradientMagnitudeSigmoidFeatureGenerator->SetSigma(1.0);
m_GradientMagnitudeSigmoidFeatureGenerator->SetAlpha( -0.1 );
m_GradientMagnitudeSigmoidFeatureGenerator->SetBeta( 150.0 );
m_FastMarchingStoppingTime = 5.0;
m_FastMarchingDistanceFromSeeds = 2.0;
m_SigmoidBeta = -200.0;
m_StatusMessage = "";
m_SegmentationModule->SetCurvatureScaling(1.0);
m_SegmentationModule->SetAdvectionScaling(50.0);
m_SegmentationModule->SetPropagationScaling(10.0);
m_SegmentationModule->SetMaximumRMSError(0.0002);
m_SegmentationModule->SetMaximumNumberOfIterations(300);
}
template <class TInputImage, class TOutputImage>
void
LesionSegmentationImageFilter7<TInputImage,TOutputImage>
::GenerateInputRequestedRegion() throw(InvalidRequestedRegionError)
{
// call the superclass' implementation of this method
Superclass::GenerateInputRequestedRegion();
}
template <class TInputImage, class TOutputImage>
void
LesionSegmentationImageFilter7<TInputImage,TOutputImage>
::GenerateOutputInformation()
{
// get pointers to the input and output
typename Superclass::OutputImagePointer outputPtr = this->GetOutput();
typename Superclass::InputImageConstPointer inputPtr = this->GetInput();
if ( !outputPtr || !inputPtr)
{
return;
}
// Set the output image size to the same value as the region of interest.
RegionType region;
IndexType start;
start.Fill(0);
region.SetSize( m_RegionOfInterest.GetSize() );
region.SetIndex( start );
// Copy Information without modification.
outputPtr->CopyInformation( inputPtr );
// Adjust output region
outputPtr->SetLargestPossibleRegion(region);
// Correct origin of the extracted region.
IndexType roiStart( m_RegionOfInterest.GetIndex() );
typename Superclass::OutputImageType::PointType outputOrigin;
typedef Image< ITK_TYPENAME TInputImage::PixelType,
Superclass::InputImageDimension > ImageType;
typename ImageType::ConstPointer imagePtr =
dynamic_cast< const ImageType * >( inputPtr.GetPointer() );
if ( imagePtr )
{
// Input image supports TransformIndexToContinuousPoint
inputPtr->TransformIndexToPhysicalPoint( roiStart, outputOrigin);
}
else
{
// Generic type of image
const typename Superclass::InputImageType::PointType&
inputOrigin = inputPtr->GetOrigin();
const typename Superclass::InputImageType::SpacingType&
spacing = inputPtr->GetSpacing() ;
for( unsigned int i=0; i<ImageDimension; i++)
{
outputOrigin[i] = inputOrigin[i] + roiStart[i] * spacing[i];
}
}
outputPtr->SetOrigin( outputOrigin );
}
template< class TInputImage, class TOutputImage >
void
LesionSegmentationImageFilter7< TInputImage, TOutputImage >
::GenerateData()
{
m_SigmoidFeatureGenerator->SetBeta( m_SigmoidBeta );
m_SegmentationModule->SetDistanceFromSeeds(m_FastMarchingDistanceFromSeeds);
m_SegmentationModule->SetStoppingValue(m_FastMarchingStoppingTime);
// Allocate the output
this->GetOutput()->SetBufferedRegion( this->GetOutput()->GetRequestedRegion() );
this->GetOutput()->Allocate();
/* DEBUG REMOVEME
typedef itk::ImageFileReader< OutputImageType > OutputImageReaderType;
OutputImageReaderType::Pointer outputReader = OutputImageReaderType::New();
outputReader->SetFileName("f:/Kitware/VolView/bin/Dashboard-Static/bin/Release/fastmarchingoutput.mha");
outputReader->Update();
this->GraftOutput(outputReader->GetOutput());
return;*/
// END DEBUG REMOVEME
typename InputImageType::ConstPointer input = this->GetInput();
// Crop
m_CropFilter->SetInput(input);
m_CropFilter->SetRegionOfInterest(m_RegionOfInterest);
m_CropFilter->Update();
//this->GraftOutput(m_CropFilter->GetOutput());
//return;
// Convert the output of cropping to a spatial object that can be fed into
// the lesion segmentation method
typename InputImageType::Pointer inputImage = m_CropFilter->GetOutput();
inputImage->DisconnectPipeline();
m_InputSpatialObject->SetImage(inputImage);
// Seeds
typename SeedSpatialObjectType::Pointer seedSpatialObject =
SeedSpatialObjectType::New();
seedSpatialObject->SetPoints(m_Seeds);
m_LesionSegmentationMethod->SetInitialSegmentation(seedSpatialObject);
// Do the actual segmentation.
m_LesionSegmentationMethod->Update();
// Graft the output.
typename SpatialObjectType::Pointer segmentation =
const_cast< SpatialObjectType * >(m_SegmentationModule->GetOutput());
typename OutputSpatialObjectType::Pointer outputObject =
dynamic_cast< OutputSpatialObjectType * >( segmentation.GetPointer() );
typename OutputImageType::Pointer outputImage =
const_cast< OutputImageType * >(outputObject->GetImage());
outputImage->DisconnectPipeline();
this->GraftOutput(outputImage);
/*typedef itk::ImageFileWriter< OutputImageType > WriterType;
WriterType::Pointer writer = WriterType::New();
writer->SetFileName("output.mha");
writer->SetInput(outputImage);
writer->Write();*/
}
template <class TInputImage, class TOutputImage>
void LesionSegmentationImageFilter7< TInputImage,TOutputImage >
::ProgressUpdate( Object * caller,
const EventObject & e )
{
if( typeid( itk::ProgressEvent ) == typeid( e ) )
{
if (dynamic_cast< CropFilterType * >(caller))
{
this->m_StatusMessage = "Cropping data..";
this->UpdateProgress( m_CropFilter->GetProgress() );
}
else if (dynamic_cast< LungWallGeneratorType * >(caller))
{
// Given its iterative nature.. a cranky heuristic here.
this->m_StatusMessage = "Generating lung wall feature..";
this->UpdateProgress( ((double)(((int)(
m_LungWallFeatureGenerator->GetProgress()*500))%100))/100.0 );
}
else if (dynamic_cast< SigmoidFeatureGeneratorType * >(caller))
{
this->m_StatusMessage = "Generating intensity feature..";
this->UpdateProgress( m_SigmoidFeatureGenerator->GetProgress() );
}
else if (dynamic_cast< GradientMagnitudeSigmoidGeneratorType * >(caller))
{
m_StatusMessage = "Generating edge feature..";
this->UpdateProgress( m_GradientMagnitudeSigmoidFeatureGenerator->GetProgress());
}
else if (dynamic_cast< VesselnessGeneratorType * >(caller))
{
m_StatusMessage = "Generating vesselness feature (Sato et al.)..";
this->UpdateProgress( m_LungWallFeatureGenerator->GetProgress() );
}
else if (dynamic_cast< SegmentationModuleType * >(caller))
{
m_StatusMessage = "Segmenting using geodesic active contour level set..";
this->UpdateProgress( m_SegmentationModule->GetProgress() );
}
}
}
template <class TInputImage, class TOutputImage>
void
LesionSegmentationImageFilter7<TInputImage,TOutputImage>
::PrintSelf(std::ostream& os, Indent indent) const
{
Superclass::PrintSelf(os,indent);
}
}//end of itk namespace
#endif
|