1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
|
/*=========================================================================
Copyright (c) Kitware, Inc.
All rights reserved.
See Copyright.txt or http://www.kitware.com/VolViewCopyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
/** This module refines the labeling of an image by applying iterations of a
* MarkovRandomField filter. The module expects two inputs, the first one is
* the current labeling of the image, the second one is the original image from
* which the labeling was generated. */
#ifndef _vvITKMarkovRandomField_h
#define _vvITKMarkovRandomField_h
#include "vvITKFilterModuleTwoInputs.h"
#include "itkImage.h"
#include "itkFixedArray.h"
#include "itkScalarToArrayCastImageFilter.h"
#include "itkMRFImageFilter.h"
#include "itkDistanceToCentroidMembershipFunction.h"
#include "itkMinimumDecisionRule.h"
#include "itkImageClassifierBase.h"
namespace VolView
{
namespace PlugIn
{
template< class TInputPixelType >
class MarkovRandomField : public
FilterModuleTwoInputs<
itk::MRFImageFilter<
itk::Image< itk::FixedArray<TInputPixelType,1>, 3 >,
itk::Image<unsigned char,3> >,
itk::Image<unsigned char,3>,
itk::Image<TInputPixelType,3> > {
public:
typedef itk::Image<unsigned char,3> LabelImageType;
typedef itk::Image<TInputPixelType,3> InputImageType;
typedef itk::FixedArray<TInputPixelType,1> ArrayPixelType;
typedef itk::Image< ArrayPixelType, 3 > ArrayImageType;
typedef itk::MRFImageFilter< ArrayImageType,
LabelImageType > MRFFilterType;
typedef FilterModuleTwoInputs< MRFFilterType,
LabelImageType,
InputImageType > Superclass;
typedef typename MRFFilterType::OutputImageType OutputImageType;
typedef typename OutputImageType::PixelType OutputPixelType;
typedef itk::ScalarToArrayCastImageFilter<
InputImageType,
ArrayImageType > ScalarToArrayFilterType;
public:
/** Constructor */
MarkovRandomField()
{
}
/** Destructor */
virtual ~MarkovRandomField()
{
}
/** ProcessData performs the actual filtering on the data.
In this class, this method only initialize the import
filter for the second input, then it lets the ProcessData
method of the base class perform the rest of the operations. */
void
ProcessData( const vtkVVProcessDataStruct * pds )
{
// Let superclass perform initial connections
this->Superclass::ProcessData( pds );
MRFFilterType * filter = this->GetFilter();
vtkVVPluginInfo *info = this->GetPluginInfo();
const unsigned int neighborhoodRadius = atoi( info->GetGUIProperty(info, 0, VVP_GUI_VALUE ));
const unsigned int numberOfClasses = atoi( info->GetGUIProperty(info, 1, VVP_GUI_VALUE ));
const unsigned int maximumNumberOfIterations = atoi( info->GetGUIProperty(info, 2, VVP_GUI_VALUE ));
const float smoothingFactor = atof( info->GetGUIProperty(info, 3, VVP_GUI_VALUE ));
const float errorTolerance = atof( info->GetGUIProperty(info, 4, VVP_GUI_VALUE ));
filter->SetNeighborhoodRadius( neighborhoodRadius );
filter->SetNumberOfClasses( numberOfClasses );
filter->SetMaximumNumberOfIterations( maximumNumberOfIterations );
filter->SetSmoothingFactor( smoothingFactor );
filter->SetErrorTolerance( errorTolerance );
typename ScalarToArrayFilterType::Pointer
scalarToArrayFilter = ScalarToArrayFilterType::New();
scalarToArrayFilter->SetInput( this->GetInput2() );
scalarToArrayFilter->ReleaseDataFlagOn();
filter->SetInput( scalarToArrayFilter->GetOutput() );
typedef itk::ImageClassifierBase<
ArrayImageType,
LabelImageType > SupervisedClassifierType;
typedef typename SupervisedClassifierType::Pointer ClassifierPointer;
ClassifierPointer classifier = SupervisedClassifierType::New();
typedef itk::MinimumDecisionRule DecisionRuleType;
typedef typename DecisionRuleType::Pointer DecisionRulePointer;
DecisionRulePointer classifierDecisionRule = DecisionRuleType::New();
classifier->SetDecisionRule( classifierDecisionRule.GetPointer() );
typedef itk::Statistics::DistanceToCentroidMembershipFunction<
ArrayPixelType >
MembershipFunctionType;
typedef typename MembershipFunctionType::Pointer MembershipFunctionPointer;
vnl_vector<double> centroid(1);
for( unsigned int i=0; i < numberOfClasses; i++ )
{
MembershipFunctionPointer membershipFunction =
MembershipFunctionType::New();
centroid[0] = 0.0; // FIXME : PUT HERE THE MEAN FOR CLASS ITH
membershipFunction->SetCentroid( centroid );
classifier->AddMembershipFunction( membershipFunction );
}
filter->SetClassifier( classifier );
// Execute the filter
try
{
filter->Update();
}
catch( itk::ProcessAborted & )
{
return;
}
// Copy the data (with casting) to the output buffer provided by the PlugIn API
typename OutputImageType::ConstPointer outputImage = filter->GetOutput();
typedef itk::ImageRegionConstIterator< OutputImageType > OutputIteratorType;
OutputIteratorType ot( outputImage, outputImage->GetBufferedRegion() );
typedef unsigned char OutputVolumePixelType;
OutputVolumePixelType * outData = (OutputVolumePixelType *)(pds->outData);
ot.GoToBegin();
while( !ot.IsAtEnd() )
{
*outData = static_cast<unsigned char>( ( ot.Get() ) );
++ot;
++outData;
}
} // end of ProcessData
private:
};
} // end namespace PlugIn
} // end namespace VolView
#endif
|