1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
|
/*=========================================================================
Copyright (c) Kitware, Inc.
All rights reserved.
See Copyright.txt or http://www.kitware.com/VolViewCopyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
/* perform a pixel-wise intensity transformation using a ScalarImageKMeansClassifier function */
#include "vvITKFilterModule.h"
#include "vnl/vnl_math.h"
#include "itkOutputWindow.h"
#include "itkMaskImageFilter.h"
#include "itkNumericTraits.h"
#include "itkImportImageFilter.h"
#include "itkScalarImageKmeansImageFilter.h"
#include "itkImageMaskSpatialObject.h"
// Simple class to compute intra class statistics
template <class TPixelType>
class StatisticsPair
{
typedef typename itk::NumericTraits< TPixelType >::RealType SumType;
public:
unsigned long pixels;
SumType sum;
SumType squaredSum;
TPixelType maximum;
TPixelType minimum;
public:
StatisticsPair()
{
this->pixels = 0L;
this->sum = itk::NumericTraits< SumType >::Zero;
this->squaredSum = itk::NumericTraits< SumType >::Zero;
}
void Clear()
{
this->pixels = 0L;
this->sum = itk::NumericTraits< SumType >::Zero;
this->squaredSum = itk::NumericTraits< SumType >::Zero;
this->minimum = itk::NumericTraits< TPixelType >::max();
this->maximum = itk::NumericTraits< TPixelType >::NonpositiveMin();
}
void AddValue( const TPixelType & value )
{
this->pixels++;
this->sum += static_cast< SumType >( value );
this->squaredSum += static_cast< SumType >( value * value );
if( value > maximum )
{
maximum = value;
}
if( value < minimum )
{
minimum = value;
}
}
};
template <class InputPixelType>
class ScalarImageKMeansClassifierRunner
{
public:
itkStaticConstMacro( Dimension, unsigned int, 3 );
typedef InputPixelType PixelType;
typedef itk::Image< PixelType, 3 > ImageType;
typedef itk::ScalarImageKmeansImageFilter<
ImageType > FilterType;
typedef VolView::PlugIn::FilterModule< FilterType > ModuleType;
typedef unsigned char MaskPixelType;
typedef itk::Image< MaskPixelType, Dimension > MaskImageType;
typedef itk::ImportImageFilter< MaskPixelType,
Dimension > MaskImportFilterType;
typedef itk::ImageMaskSpatialObject< Dimension > ImageMaskSpatialObjectType;
typedef typename ImageMaskSpatialObjectType::RegionType MaskRegionType;
public:
ScalarImageKMeansClassifierRunner() {}
void Execute( vtkVVPluginInfo *info, vtkVVProcessDataStruct *pds )
{
ModuleType module;
module.SetPluginInfo( info );
module.SetUpdateMessage("Performing Classification with a K-Means algorithm");
const unsigned int numberOfClasses = atoi( info->GetGUIProperty(info, 0, VVP_GUI_VALUE ) );
const unsigned int contiguousLabels = atoi( info->GetGUIProperty(info, 1, VVP_GUI_VALUE ) );
const int useMask = atoi( info->GetGUIProperty( info, 2, VVP_GUI_VALUE));
int outsideMaskValue = atoi( info->GetGUIProperty( info, 3, VVP_GUI_VALUE ));
typedef unsigned char MaskPixelType;
typedef itk::MaskImageFilter< ImageType, MaskImageType,
ImageType >
MaskFilterType;
typename MaskFilterType::Pointer maskFilter;
if( useMask )
{
maskFilter = MaskFilterType::New();
// DO some crazy error checking
if( info->InputVolume2ScalarType != VTK_UNSIGNED_CHAR )
{
info->SetProperty( info, VVP_ERROR,
"The mask image must have pixel type unsigned char.");
return;
}
if( info->InputVolume2NumberOfComponents != 1 )
{
info->SetProperty( info, VVP_ERROR, "The mask image must be single component.");
return;
}
if( (info->InputVolume2Dimensions[0] != info->InputVolumeDimensions[0]) ||
(info->InputVolume2Dimensions[1] != info->InputVolumeDimensions[1]) ||
(info->InputVolume2Dimensions[2] != info->InputVolumeDimensions[2]) )
{
info->SetProperty( info, VVP_ERROR,
"The mask image must have the same dimensions as the input image.");
return;
}
maskFilter = MaskFilterType::New();
typename MaskImportFilterType::Pointer maskImportFilter
= MaskImportFilterType::New();
maskFilter->SetInput1( module.GetFilter()->GetInput() );
// Get spacing, origin info etc.. use the same ones as the input image
typename ImageType::SizeType size;
typename ImageType::IndexType start;
double origin[Dimension];
double spacing[Dimension];
size[0] = info->InputVolumeDimensions[0];
size[1] = info->InputVolumeDimensions[1];
size[2] = info->InputVolumeDimensions[2];
for(unsigned int i=0; i<Dimension; i++)
{
origin[i] = info->InputVolumeOrigin[i];
spacing[i] = info->InputVolumeSpacing[i];
start[i] = 0;
}
typename ImageType::RegionType region;
region.SetIndex( start );
region.SetSize( size );
maskImportFilter->SetSpacing( spacing );
maskImportFilter->SetOrigin( origin );
maskImportFilter->SetRegion( region );
// Import
const unsigned int totalNumberOfPixels = region.GetNumberOfPixels();
const bool importFilterWillDeleteTheInputBuffer = false;
const unsigned int numberOfPixelsPerSlice = size[0] * size[1];
MaskPixelType * maskdataBlockStart =
static_cast< MaskPixelType * >( pds->inData2 )
+ numberOfPixelsPerSlice * pds->StartSlice;
maskImportFilter->SetImportPointer( maskdataBlockStart,
totalNumberOfPixels,
importFilterWillDeleteTheInputBuffer );
maskImportFilter->Update();
maskFilter->SetInput2( maskImportFilter->GetOutput() );
// Make sure outsideMaskValue is within bounds
if( outsideMaskValue >
itk::NumericTraits< PixelType >::max() )
{
outsideMaskValue =
itk::NumericTraits< PixelType >::max();
}
else if( outsideMaskValue <
itk::NumericTraits< PixelType >::min() )
{
outsideMaskValue =
itk::NumericTraits< PixelType >::min();
}
maskFilter->SetOutsideValue( outsideMaskValue );
module.GetFilter()->SetInput( maskFilter->GetOutput() );
// constrain computation of the classification statistics to the bounding
// box of the mask region.
typename ImageMaskSpatialObjectType::Pointer maskSpatialObject =
ImageMaskSpatialObjectType::New();
maskSpatialObject->SetImage( maskImportFilter->GetOutput() );
this->m_ClassificationRegion = maskSpatialObject->GetAxisAlignedBoundingBoxRegion();
module.GetFilter()->SetImageRegion( this->m_ClassificationRegion );
}
module.GetFilter()->SetUseNonContiguousLabels( !contiguousLabels );
// If we have a mask, we will add a class with mean of the outside value
//
if (useMask)
{
for(unsigned int k=0; k<numberOfClasses-1; k++)
{
module.GetFilter()->AddClassWithInitialMean( 0.0 );
}
module.GetFilter()->AddClassWithInitialMean( outsideMaskValue );
}
else
{
for(unsigned int k=0; k<numberOfClasses; k++)
{
module.GetFilter()->AddClassWithInitialMean( 0.0 );
}
}
// Execute the filter
module.ProcessData( pds );
// Compute intra-class statistics..
// And write intra-class statistics to a file
// And display intra-class statistics in a text window
typename FilterType::OutputImageType::ConstPointer outputImage =
module.GetFilter()->GetOutput();
typedef itk::ImageRegionConstIterator< typename FilterType::OutputImageType > OutputIteratorType;
if( !useMask )
{
this->m_ClassificationRegion = outputImage->GetBufferedRegion();
}
OutputIteratorType ot( outputImage, this->m_ClassificationRegion );
typedef StatisticsPair< typename FilterType::OutputPixelType > StatisticsPairType;
typedef std::map< typename FilterType::OutputPixelType, StatisticsPairType > HistogramType;
HistogramType histogram;
typename HistogramType::iterator itr = histogram.begin();
while( itr != histogram.end() )
{
itr->second.Clear();
++itr;
}
typename FilterType::InputImageType::ConstPointer
image = module.GetFilter()->GetInput();
typedef itk::ImageRegionConstIterator< typename FilterType::InputImageType > InputIteratorType;
if( !useMask )
{
this->m_ClassificationRegion = image->GetBufferedRegion();
}
InputIteratorType it( image, this->m_ClassificationRegion );
it.GoToBegin();
ot.GoToBegin();
while( !ot.IsAtEnd() )
{
const typename FilterType::OutputPixelType pixelValue = ot.Get();
histogram[pixelValue].AddValue( it.Get() );
++ot;
++it;
}
std::ostringstream FinalStatisticsLog;
FinalStatisticsLog << "Class\tPixels\tMean\tStdDev\tMin\tMax" << std::endl;
typename HistogramType::const_iterator citr = histogram.begin();
while( citr != histogram.end() )
{
const unsigned long count = citr->second.pixels;
const float density = citr->second.sum / (float)count;
const float stddev = vcl_sqrt((citr->second.squaredSum /
static_cast< double >(count)) - (density * density) );
FinalStatisticsLog << static_cast< float >(citr->first) <<
"\t" << count << "\t" << density << "\t" <<
stddev << "\t" << static_cast<float>(citr->second.minimum) << "\t" <<
static_cast<float>(citr->second.maximum) << std::endl;
++citr;
}
FinalStatisticsLog << std::ends;
// Display and write statistics log to a file
itk::OutputWindow::Pointer outputWnd = itk::OutputWindow::New();
itk::OutputWindow::SetInstance( outputWnd );
outputWnd->DisplayText( FinalStatisticsLog.str().c_str() );
std::ofstream finalStatisticsLog(
"ScalarKMeansClassifierStatistics.txt", std::ios::trunc);
finalStatisticsLog << FinalStatisticsLog.str() << std::endl;
finalStatisticsLog.close();
}
private:
MaskRegionType m_ClassificationRegion;
};
static int ProcessData(void *inf, vtkVVProcessDataStruct *pds)
{
vtkVVPluginInfo *info = (vtkVVPluginInfo *)inf;
try
{
switch( info->InputVolumeScalarType )
{
case VTK_CHAR:
{
ScalarImageKMeansClassifierRunner<signed char> runner;
runner.Execute( info, pds );
break;
}
case VTK_UNSIGNED_CHAR:
{
ScalarImageKMeansClassifierRunner<unsigned char> runner;
runner.Execute( info, pds );
break;
}
case VTK_SHORT:
{
ScalarImageKMeansClassifierRunner<signed short> runner;
runner.Execute( info, pds );
break;
}
case VTK_UNSIGNED_SHORT:
{
ScalarImageKMeansClassifierRunner<unsigned short> runner;
runner.Execute( info, pds );
break;
}
case VTK_INT:
{
ScalarImageKMeansClassifierRunner<signed int> runner;
runner.Execute( info, pds );
break;
}
case VTK_UNSIGNED_INT:
{
ScalarImageKMeansClassifierRunner<unsigned int> runner;
runner.Execute( info, pds );
break;
}
case VTK_LONG:
{
ScalarImageKMeansClassifierRunner<signed long> runner;
runner.Execute( info, pds );
break;
}
case VTK_UNSIGNED_LONG:
{
ScalarImageKMeansClassifierRunner<unsigned long> runner;
runner.Execute( info, pds );
break;
}
case VTK_FLOAT:
{
ScalarImageKMeansClassifierRunner<float> runner;
runner.Execute( info, pds );
break;
}
case VTK_DOUBLE:
{
ScalarImageKMeansClassifierRunner<double> runner;
runner.Execute( info, pds );
break;
}
}
}
catch( itk::ExceptionObject & except )
{
info->SetProperty( info, VVP_ERROR, except.what() );
return -1;
}
return 0;
}
static int UpdateGUI(void *inf)
{
vtkVVPluginInfo *info = (vtkVVPluginInfo *)inf;
info->SetGUIProperty(info, 0, VVP_GUI_LABEL, "Number of Classes");
info->SetGUIProperty(info, 0, VVP_GUI_TYPE, VVP_GUI_SCALE);
info->SetGUIProperty(info, 0, VVP_GUI_DEFAULT, "4");
info->SetGUIProperty(info, 0, VVP_GUI_HELP, "Number of classes to be used for the K-Means classification. The number of classes is a critical decision in this algorithm, you want to make sure that you add at least one class more to the expected number of classes.");
info->SetGUIProperty(info, 0, VVP_GUI_HINTS , "1 20 1");
info->SetGUIProperty(info, 1, VVP_GUI_LABEL, "Use Contiguous Labels");
info->SetGUIProperty(info, 1, VVP_GUI_TYPE, VVP_GUI_CHECKBOX);
info->SetGUIProperty(info, 1, VVP_GUI_DEFAULT, "0");
info->SetGUIProperty(info, 1, VVP_GUI_HELP, "This filter produces a labeled image. In order to facilitate visualization, the labels assigned to pixels are distributed across the dynamic range of the pixels. For some applications, however, it is preferable to have contiguous label values starting from zero. When you this checkbox is on the output image will have contiguous labels, and you will have to adjust the visualization parameters in order to see the content of the image.");
info->SetGUIProperty(info, 2, VVP_GUI_LABEL, "Use Mask Input");
info->SetGUIProperty(info, 2, VVP_GUI_TYPE, VVP_GUI_CHECKBOX);
info->SetGUIProperty(info, 2, VVP_GUI_DEFAULT, "0" );
info->SetGUIProperty(info, 2, VVP_GUI_HELP, "Optionally a mask input given as a second input to mask out segments of the input volume. The mask must be of the same dimensions as the input and have zero in the regions that are to be discarded.");
info->SetGUIProperty(info, 3, VVP_GUI_LABEL, "Mask outside value");
info->SetGUIProperty(info, 3, VVP_GUI_TYPE, VVP_GUI_SCALE);
info->SetGUIProperty(info, 3, VVP_GUI_DEFAULT, "255" );
info->SetGUIProperty(info, 3, VVP_GUI_HELP, "Outside value that the masking opertaion assigns to pixels that are being discarded. This value must be a value that is very different from the rest of the image so that KMeans or MRF filtering does not get affected.");
info->SetGUIProperty(info, 3, VVP_GUI_HINTS, "0.0 10000.0 1");
info->SetProperty(info, VVP_REQUIRED_Z_OVERLAP, "0");
info->OutputVolumeScalarType = VTK_UNSIGNED_CHAR;
info->OutputVolumeNumberOfComponents = 1;
memcpy(info->OutputVolumeDimensions,info->InputVolumeDimensions,
3*sizeof(int));
memcpy(info->OutputVolumeSpacing,info->InputVolumeSpacing,
3*sizeof(float));
memcpy(info->OutputVolumeOrigin,info->InputVolumeOrigin,
3*sizeof(float));
return 1;
}
extern "C" {
void VV_PLUGIN_EXPORT vvITKScalarImageKMeansClassifierInit(vtkVVPluginInfo *info)
{
vvPluginVersionCheck();
// setup information that never changes
info->ProcessData = ProcessData;
info->UpdateGUI = UpdateGUI;
info->SetProperty(info, VVP_NAME, "Scalar Image K-Means");
info->SetProperty(info, VVP_GROUP, "Segmentation - Statistics");
info->SetProperty(info, VVP_TERSE_DOCUMENTATION,
"Performs classification of a Scalar image using the K-Means algorithm");
info->SetProperty(info, VVP_FULL_DOCUMENTATION,
"This filters performs statistical classification in a scalar image by applying the K-Means algortihm. The use must provide a number of classes in order to initialize the classification. The output is a labeled image encoded in 8 bits. It is assumed that no more than 256 class will be expected as output. Optionally, a mask image may be specified to mask out a certain region and run Kmeans on the smallest rectangular bounding box encapsulating the mask. The mask is expected to be a file with pixel type UnsignedChar and have non-zero value in the foreground. Note that the regions masked away (discarded) also constitute a class.");
info->SetProperty(info, VVP_SUPPORTS_IN_PLACE_PROCESSING, "0");
info->SetProperty(info, VVP_SUPPORTS_PROCESSING_PIECES, "0");
info->SetProperty(info, VVP_NUMBER_OF_GUI_ITEMS, "4");
info->SetProperty(info, VVP_REQUIRED_Z_OVERLAP, "0");
info->SetProperty(info, VVP_PER_VOXEL_MEMORY_REQUIRED, "0");
info->SetProperty(info, VVP_REQUIRES_SERIES_INPUT, "0");
info->SetProperty(info, VVP_SUPPORTS_PROCESSING_SERIES_BY_VOLUMES, "0");
info->SetProperty(info, VVP_PRODUCES_OUTPUT_SERIES, "0");
info->SetProperty(info, VVP_PRODUCES_PLOTTING_OUTPUT, "0");
info->SetProperty(info, VVP_REQUIRES_SECOND_INPUT, "1");
info->SetProperty(info, VVP_SECOND_INPUT_OPTIONAL, "1");
}
}
|