1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
|
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include "vorconfig.h"
#include "common.h"
#include "globals.h"
#include "sprite.h"
#include "rocks.h"
SDL_Surface *load_image(char *filename);
void load_ship(void);
// 2 sets of sprites, sorted by position
static Sprite **sprites[2] = { NULL, NULL };
// which set are we using?
static int set = 0;
// size of squares into which sprites are sorted.
static int grid_size = 0;
// screen size in grid squares.
static int gw = 0, gh = 0;
// lists of free sprites, by type.
Sprite *free_sprites[N_TYPES];
static void
get_shape(Sprite *s)
{
int x, y;
uint16_t *px, transp;
uint32_t bits = 0, bit, *p;
s->area = 0;
if(s->image->format->BytesPerPixel != 2) {
fprintf(stderr, "get_shape(): not a 16-bit image!\n");
exit(1);
}
s->w = s->image->w; s->h = s->image->h;
grid_size = max(grid_size, max(s->w, s->h));
s->mask_w = ((s->w+31)>>5);
s->mask = malloc(s->mask_w*s->h*sizeof(uint32_t));
if(!s->mask) {
fprintf(stderr, "get_shape(): can't allocate bitmask.\n");
exit(1);
}
if(SDL_MUSTLOCK(s->image)) { SDL_LockSurface(s->image); }
px = s->image->pixels;
transp = s->image->format->colorkey;
p = s->mask;
for(y=0; y<s->image->h; y++) {
bit = 0;
for(x=0; x<s->image->w; x++) {
if(!bit) { bits = 0; bit = 0x80000000; }
if(*px++ != transp) { bits |= bit; s->area++; }
bit >>= 1;
if(!bit || x == s->image->w - 1) { *(p++) = bits; }
}
px = (uint16_t *) ((uint8_t *) px + s->image->pitch - 2*s->image->w);
}
if(SDL_MUSTLOCK(s->image)) { SDL_UnlockSurface(s->image); }
}
void
load_sprite(Sprite *s, char *filename)
{
s->image = load_image(filename);
if(s->image) get_shape(s);
}
static void
load_sprites(void)
{
load_ship();
load_rocks();
}
void
init_sprites(void)
{
load_sprites();
grid_size = grid_size * 3 / 2;
gw = (XSIZE + 2*grid_size) / grid_size; // -grid-size to XSIZE inclusive (so sprites can be just off either edge)
gh = (YSIZE + 2*grid_size) / grid_size;
sprites[0] = malloc(2 * gw * gh * sizeof(Sprite *));
sprites[1] = (void *)sprites[0] + gw * gh * sizeof(Sprite *);
if(!sprites[0]) {
fprintf(stderr, "init_sprites(): can't allocate grid squares.\n");
exit(1);
}
memset(sprites[0], 0, 2 * gw * gh * sizeof(Sprite *));
set = 0;
}
static inline Sprite **
square(int x, int y, int set)
{
int b = (x+grid_size)/grid_size + gw*((y+grid_size)/grid_size);
if(b >= gw*gh || b < 0) {
fprintf(stderr, "square(%i, %i, %i) = %i\n", x, y, set, b);
((int*)0)[0] = 0;
}
return &sprites[set][b];
}
void
add_sprite(Sprite *s)
{
insert_sprite(square(s->x, s->y, set), s);
}
void
reset_sprites(void)
{
int i;
for(i=0; i<gw*gh; i++)
while(sprites[set][i]) {
Sprite *s = remove_sprite(&sprites[set][i]);
insert_sprite(&free_sprites[s->type], s);
s->flags = 0;
}
}
void
move_sprite(Sprite *s)
{
if(s->flags & MOVE) {
s->x += (s->dx - screendx)*t_frame;
s->y += (s->dy - screendy)*t_frame;
}
}
void
sort_sprite(Sprite *s)
{
// clip it, or sort it into the other set of sprites.
if(s->x + s->w < 0 || s->x >= XSIZE
|| s->y + s->h < 0 || s->y >= YSIZE) {
insert_sprite(&free_sprites[s->type], s);
s->flags = 0;
} else insert_sprite(square(s->x, s->y, 1-set), s);
}
void
move_sprites(void)
{
int sq;
Sprite **head;
// Move all the sprites
for(sq=0; sq<gw*gh; sq++) {
head=&sprites[set][sq];
while(*head) {
Sprite *s = remove_sprite(head);
move_sprite(s); sort_sprite(s);
}
}
set = 1-set; // switch to other set of sprites.
}
// xov: number of bits of overlap
// bit: number of bits in from the left edge of amask where bmask is
static int
line_collide(int xov, unsigned bit, uint32_t *amask, uint32_t *bmask)
{
int i, words = (xov-1) >> 5;
uint32_t abits;
for(i=0; i<words; i++) {
abits = *amask++ << bit;
abits |= *amask >> (32-bit);
if(abits & *bmask++) return true;
}
abits = *amask << bit;
if(abits & *bmask) return true;
return false;
}
// xov: number of bits/pixels of horizontal overlap
// yov: number of bits/pixels of vertical overlap
static int
mask_collide(int xov, int yov, Sprite *a, Sprite *b)
{
int y;
int xoffset = a->w - xov;
int word = xoffset >> 5, bit = xoffset & 31;
uint32_t *amask = a->mask, *bmask = b->mask;
if(yov > 0) {
amask = a->mask + ((a->h - yov) * a->mask_w) + word;
bmask = b->mask;
} else {
yov = -yov;
amask = a->mask + word;
bmask = b->mask + ((b->h - yov) * b->mask_w);
}
for(y=0; y<yov; y++) {
if(line_collide(xov, bit, amask, bmask)) return 1;
amask += a->mask_w; bmask += b->mask_w;
}
return 0;
}
int
collide(Sprite *a, Sprite *b)
{
int dx, dy, xov, yov;
if(!COLLIDES(a) || !COLLIDES(b)) return false;
if(b->x < a->x) { Sprite *tmp = a; a = b; b = tmp; }
dx = b->x - a->x;
dy = b->y - a->y;
xov = max(min(a->w - dx, b->w), 0);
if(dy >= 0) yov = max(min(a->h - dy, b->h), 0);
else yov = -max(min(b->h - -dy, a->h), 0);
if(xov == 0 || yov == 0) return false;
else return mask_collide(xov, yov, a, b);
}
void
collide_with_list(Sprite *s, Sprite *list)
{
for(; list; list=list->next)
if(collide(s, list)) do_collision(s, list);
}
void
collisions(void)
{
int i, end = gw*gh;
Sprite *s;
for(i=0; i<end; i++) {
for(s=sprites[set][i]; s; s=s->next) {
collide_with_list(s, s->next);
if(i+1 < end) collide_with_list(s, sprites[set][i+1]);
if(i+gw < end) collide_with_list(s, sprites[set][i+gw]);
if(i+gw+1 < end) collide_with_list(s, sprites[set][i+gw+1]);
}
}
}
int
pixel_collide(Sprite *s, int x, int y)
{
uint32_t pmask;
if(!COLLIDES(s)) return false;
if(x < s->x || y < s->y || x >= s->x + s->w || y >= s->y + s->h) return 0;
x -= s->x; y -= s->y;
pmask = 0x80000000 >> (x&0x1f);
return s->mask[(y*s->mask_w) + (x>>5)] & pmask;
}
Sprite *
pixel_hit_in_square(Sprite *r, float x, float y)
{
for(; r; r=r->next) {
if(COLLIDES(r) && pixel_collide(r, x, y)) return r;
}
return 0;
}
Sprite *
pixel_collides(float x, float y)
{
int l, t;
Sprite **sq;
Sprite *ret;
l = (x + grid_size) / grid_size; t = (y + grid_size) / grid_size;
sq = &sprites[set][l + t*gw];
if((ret = pixel_hit_in_square(*sq, x, y))) return ret;
if(l > 0 && (ret = pixel_hit_in_square(*(sq-1), x, y))) return ret;
if(t > 0 && (ret = pixel_hit_in_square(*(sq-gw), x, y))) return ret;
if(l > 0 && t > 0 && (ret = pixel_hit_in_square(*(sq-1-gw), x, y))) return ret;
return 0;
}
float
sprite_mass(Sprite *s)
{
if(s->type == SHIP) return s->area;
else if(s->type == ROCK) return 3 * s->area;
else return 0;
}
/*
* BOUNCE THEORY
*
* ****************** In 1 Dimension *****************
*
* For now we will imagine bouncing A and B off each other in 1 dimension (along
* a line). We can safely save the other dimension for later.
*
* A and B are the same weight, and are both traveling 1m/sec, to collide right
* at the origin. With perfect bounciness, their full momentum is reversed.
*
* If we cut the weight of A down by half, then the center of our colision will
* drift towards A (the speeds of A and B are not simply reversed as in our last
* example.) However, there is always a place between A and B on the line (I'll
* call it x) such that the speeds of A and B relative to x, are simply
* reversed. Thus we can find the new speed for A like so:
*
* new A = x -(A - x)
*
* new B = x -(B - x)
*
* or, simply:
*
* new A = 2x - A
*
* new B = 2x - B
*
*
* this point x is the sort of center of momentum. If, instead of bouncing, A
* and B just globbed together, x would be center of the new glob.
*
* x is the point where there's an equal amount of force coming in from both
* sides. ie the weighted average of the speeds of A and B.
*
* average force = (A force + B force) / total mass
*
* x.speed = (a.speed * a.mass + b.speed * b.mass) / (a.mass + b.mas)
*
* then we apply the formula above for calculating the new A and B.
*
*
*
*
* ****************** In 2 Dimensions *****************
*
* OK, that's how we do it in 1D. Now we need to deal with 2D.
*
* Imagine (or draw) the two balls just as they are bouncing off each other.
* Imagine drawing a line through the centers of the balls. The balls are
* exerting force on each other only along this axis. So if we rotate
* everything, we can do our earlier 1D math along this line.
*
* It doesn't matter what direction the balls are going in, they only exert
* force on each other along this line. What we will do is to compute the part
* of the balls' momentum that is going along this line, and bounce it according
* to our math above. The other part is unaffected by the bounce, and we can
* just leave it alone.
*
* To get this component of the balls' momentum, we can use the dot product.
*
* dot(U, V) = length(U) * length(V) * cos(angle between U and V)
*
* If U is a length 1 vector, then dot(U, V) is the length of the component of V
* in the direction of U. So the components of V are:
*
* U * dot(U, V) parallel to U
*
* V - U * dot(U, V) perpendicular to U
*
* To do the actual bounce, we compute the unit vector between the center of the
* two balls, compute the components of the balls' speeds along this vector (A
* and B), and then bounce them according to the math above:
*
* new A = 2x - A
*
* new B = 2x - B
*
* But we rewrite it in relative terms:
*
* new A = A + 2(x-A)
*
* new B = B + 2(x-B)
*/
void
bounce(Sprite *a, Sprite *b)
{
float x, y, n; // (x, y) is unit vector from a to b.
float va, vb; // va, vb are balls' speeds along (x, y)
float ma, mb; // ma, mb are the balls' masses.
float vc; // vc is the "center of momentum"
// (x, y) is unit vector pointing from A's center to B's center.
x = (b->x + b->w / 2) - (a->x + a->w / 2);
y = (b->y + b->h / 2) - (a->y + a->h / 2);
n = sqrt(x*x + y*y); x /= n; y /= n;
// velocities along (x, y)
va = x*a->dx + y*a->dy;
vb = x*b->dx + y*b->dy;
if(vb-va > 0) return; // don't bounce if we're already moving away.
// get masses and compute "center" speed
ma = sprite_mass(a); mb = sprite_mass(b);
vc = (va*ma + vb*mb) / (ma+mb);
// bounce off the center speed.
a->dx += 2*x*(vc-va); a->dy += 2*y*(vc-va);
b->dx += 2*x*(vc-vb); b->dy += 2*y*(vc-vb);
}
|