1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
|
/*
* ReplayGainAnalysis - analyzes input samples and give the recommended dB change
* Copyright (C) 2001 David Robinson and Glen Sawyer
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* concept and filter values by David Robinson (David@Robinson.org)
* -- blame him if you think the idea is flawed
* original coding by Glen Sawyer (glensawyer@hotmail.com)
* -- blame him if you think this runs too slowly, or the coding is otherwise flawed
*
* lots of code improvements by Frank Klemm ( http://www.uni-jena.de/~pfk/mpp/ )
* -- credit him for all the _good_ programming ;)
*
*
* For an explanation of the concepts and the basic algorithms involved, go to:
* http://www.replaygain.org/
*/
/*
* Here's the deal. Call
*
* InitGainAnalysis ( long samplefreq );
*
* to initialize everything. Call
*
* AnalyzeSamples ( const Float_t* left_samples,
* const Float_t* right_samples,
* size_t num_samples,
* int num_channels );
*
* as many times as you want, with as many or as few samples as you want.
* If mono, pass the sample buffer in through left_samples, leave
* right_samples NULL, and make sure num_channels = 1.
*
* GetTitleGain()
*
* will return the recommended dB level change for all samples analyzed
* SINCE THE LAST TIME you called GetTitleGain() OR InitGainAnalysis().
*
* GetAlbumGain()
*
* will return the recommended dB level change for all samples analyzed
* since InitGainAnalysis() was called and finalized with GetTitleGain().
*
* Pseudo-code to process an album:
*
* Float_t l_samples [4096];
* Float_t r_samples [4096];
* size_t num_samples;
* unsigned int num_songs;
* unsigned int i;
*
* InitGainAnalysis ( 44100 );
* for ( i = 1; i <= num_songs; i++ ) {
* while ( ( num_samples = getSongSamples ( song[i], left_samples, right_samples ) ) > 0 )
* AnalyzeSamples ( left_samples, right_samples, num_samples, 2 );
* fprintf ("Recommended dB change for song %2d: %+6.2f dB\n", i, GetTitleGain() );
* }
* fprintf ("Recommended dB change for whole album: %+6.2f dB\n", GetAlbumGain() );
*/
/*
* So here's the main source of potential code confusion:
*
* The filters applied to the incoming samples are IIR filters,
* meaning they rely on up to <filter order> number of previous samples
* AND up to <filter order> number of previous filtered samples.
*
* I set up the AnalyzeSamples routine to minimize memory usage and interface
* complexity. The speed isn't compromised too much (I don't think), but the
* internal complexity is higher than it should be for such a relatively
* simple routine.
*
* Optimization/clarity suggestions are welcome.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "gain_analysis.h"
typedef unsigned short Uint16_t;
typedef signed short Int16_t;
typedef unsigned int Uint32_t;
typedef signed int Int32_t;
#define YULE_ORDER 10
#define BUTTER_ORDER 2
#define RMS_PERCENTILE 0.95 /* percentile which is louder than the proposed level */
#define MAX_SAMP_FREQ 48000. /* maximum allowed sample frequency [Hz] */
#define RMS_WINDOW_TIME 0.050 /* Time slice size [s] */
#define STEPS_per_dB 100. /* Table entries per dB */
#define MAX_dB 120. /* Table entries for 0...MAX_dB (normal max. values are 70...80 dB) */
#define MAX_ORDER (BUTTER_ORDER > YULE_ORDER ? BUTTER_ORDER : YULE_ORDER)
#define MAX_SAMPLES_PER_WINDOW (size_t) (MAX_SAMP_FREQ * RMS_WINDOW_TIME + 1) /* max. Samples per Time slice */
#define PINK_REF 64.82 /* 298640883795 */ /* calibration value */
Float_t linprebuf [MAX_ORDER * 2];
Float_t* linpre; /* left input samples, with pre-buffer */
Float_t lstepbuf [MAX_SAMPLES_PER_WINDOW + MAX_ORDER];
Float_t* lstep; /* left "first step" (i.e. post first filter) samples */
Float_t loutbuf [MAX_SAMPLES_PER_WINDOW + MAX_ORDER];
Float_t* lout; /* left "out" (i.e. post second filter) samples */
Float_t rinprebuf [MAX_ORDER * 2];
Float_t* rinpre; /* right input samples ... */
Float_t rstepbuf [MAX_SAMPLES_PER_WINDOW + MAX_ORDER];
Float_t* rstep;
Float_t routbuf [MAX_SAMPLES_PER_WINDOW + MAX_ORDER];
Float_t* rout;
unsigned int sampleWindow; /* number of samples required to reach number of milliseconds required for RMS window */
unsigned long totsamp;
double lsum;
double rsum;
int freqindex;
int first;
static Uint32_t A [(size_t)(STEPS_per_dB * MAX_dB)];
static Uint32_t B [(size_t)(STEPS_per_dB * MAX_dB)];
/* for each filter:
[0] 48 kHz, [1] 44.1 kHz, [2] 32 kHz, [3] 24 kHz, [4] 22050 Hz, [5] 16 kHz, [6] 12 kHz, [7] is 11025 Hz, [8] 8 kHz */
#ifdef WIN32
#pragma warning ( disable : 4305 )
#endif
const Float_t AYule [9] [11] = {
{ 1., -3.84664617118067, 7.81501653005538,-11.34170355132042, 13.05504219327545,-12.28759895145294, 9.48293806319790, -5.87257861775999, 2.75465861874613, -0.86984376593551, 0.13919314567432 },
{ 1., -3.47845948550071, 6.36317777566148, -8.54751527471874, 9.47693607801280, -8.81498681370155, 6.85401540936998, -4.39470996079559, 2.19611684890774, -0.75104302451432, 0.13149317958808 },
{ 1., -2.37898834973084, 2.84868151156327, -2.64577170229825, 2.23697657451713, -1.67148153367602, 1.00595954808547, -0.45953458054983, 0.16378164858596, -0.05032077717131, 0.02347897407020 },
{ 1., -1.61273165137247, 1.07977492259970, -0.25656257754070, -0.16276719120440, -0.22638893773906, 0.39120800788284, -0.22138138954925, 0.04500235387352, 0.02005851806501, 0.00302439095741 },
{ 1., -1.49858979367799, 0.87350271418188, 0.12205022308084, -0.80774944671438, 0.47854794562326, -0.12453458140019, -0.04067510197014, 0.08333755284107, -0.04237348025746, 0.02977207319925 },
{ 1., -0.62820619233671, 0.29661783706366, -0.37256372942400, 0.00213767857124, -0.42029820170918, 0.22199650564824, 0.00613424350682, 0.06747620744683, 0.05784820375801, 0.03222754072173 },
{ 1., -1.04800335126349, 0.29156311971249, -0.26806001042947, 0.00819999645858, 0.45054734505008, -0.33032403314006, 0.06739368333110, -0.04784254229033, 0.01639907836189, 0.01807364323573 },
{ 1., -0.51035327095184, -0.31863563325245, -0.20256413484477, 0.14728154134330, 0.38952639978999, -0.23313271880868, -0.05246019024463, -0.02505961724053, 0.02442357316099, 0.01818801111503 },
{ 1., -0.25049871956020, -0.43193942311114, -0.03424681017675, -0.04678328784242, 0.26408300200955, 0.15113130533216, -0.17556493366449, -0.18823009262115, 0.05477720428674, 0.04704409688120 }
};
const Float_t BYule [9] [11] = {
{ 0.03857599435200, -0.02160367184185, -0.00123395316851, -0.00009291677959, -0.01655260341619, 0.02161526843274, -0.02074045215285, 0.00594298065125, 0.00306428023191, 0.00012025322027, 0.00288463683916 },
{ 0.05418656406430, -0.02911007808948, -0.00848709379851, -0.00851165645469, -0.00834990904936, 0.02245293253339, -0.02596338512915, 0.01624864962975, -0.00240879051584, 0.00674613682247, -0.00187763777362 },
{ 0.15457299681924, -0.09331049056315, -0.06247880153653, 0.02163541888798, -0.05588393329856, 0.04781476674921, 0.00222312597743, 0.03174092540049, -0.01390589421898, 0.00651420667831, -0.00881362733839 },
{ 0.30296907319327, -0.22613988682123, -0.08587323730772, 0.03282930172664, -0.00915702933434, -0.02364141202522, -0.00584456039913, 0.06276101321749, -0.00000828086748, 0.00205861885564, -0.02950134983287 },
{ 0.33642304856132, -0.25572241425570, -0.11828570177555, 0.11921148675203, -0.07834489609479, -0.00469977914380, -0.00589500224440, 0.05724228140351, 0.00832043980773, -0.01635381384540, -0.01760176568150 },
{ 0.44915256608450, -0.14351757464547, -0.22784394429749, -0.01419140100551, 0.04078262797139, -0.12398163381748, 0.04097565135648, 0.10478503600251, -0.01863887810927, -0.03193428438915, 0.00541907748707 },
{ 0.56619470757641, -0.75464456939302, 0.16242137742230, 0.16744243493672, -0.18901604199609, 0.30931782841830, -0.27562961986224, 0.00647310677246, 0.08647503780351, -0.03788984554840, -0.00588215443421 },
{ 0.58100494960553, -0.53174909058578, -0.14289799034253, 0.17520704835522, 0.02377945217615, 0.15558449135573, -0.25344790059353, 0.01628462406333, 0.06920467763959, -0.03721611395801, -0.00749618797172 },
{ 0.53648789255105, -0.42163034350696, -0.00275953611929, 0.04267842219415, -0.10214864179676, 0.14590772289388, -0.02459864859345, -0.11202315195388, -0.04060034127000, 0.04788665548180, -0.02217936801134 }
};
const Float_t AButter [9] [3] = {
{ 1., -1.97223372919527, 0.97261396931306 },
{ 1., -1.96977855582618, 0.97022847566350 },
{ 1., -1.95835380975398, 0.95920349965459 },
{ 1., -1.95002759149878, 0.95124613669835 },
{ 1., -1.94561023566527, 0.94705070426118 },
{ 1., -1.92783286977036, 0.93034775234268 },
{ 1., -1.91858953033784, 0.92177618768381 },
{ 1., -1.91542108074780, 0.91885558323625 },
{ 1., -1.88903307939452, 0.89487434461664 }
};
const Float_t BButter [9] [3] = {
{ 0.98621192462708, -1.97242384925416, 0.98621192462708 },
{ 0.98500175787242, -1.97000351574484, 0.98500175787242 },
{ 0.97938932735214, -1.95877865470428, 0.97938932735214 },
{ 0.97531843204928, -1.95063686409857, 0.97531843204928 },
{ 0.97316523498161, -1.94633046996323, 0.97316523498161 },
{ 0.96454515552826, -1.92909031105652, 0.96454515552826 },
{ 0.96009142950541, -1.92018285901082, 0.96009142950541 },
{ 0.95856916599601, -1.91713833199203, 0.95856916599601 },
{ 0.94597685600279, -1.89195371200558, 0.94597685600279 }
};
#ifdef WIN32
#pragma warning ( default : 4305 )
#endif
/* When calling this procedure, make sure that ip[-order] and op[-order] point to real data! */
static void
filter ( const Float_t* input, Float_t* output, size_t nSamples, const Float_t* a, const Float_t* b, size_t order )
{
double y;
size_t i;
size_t k;
for ( i = 0; i < nSamples; i++ ) {
y = input[i] * b[0];
for ( k = 1; k <= order; k++ )
y += input[i-k] * b[k] - output[i-k] * a[k];
output[i] = (Float_t)y;
}
}
/* returns a INIT_GAIN_ANALYSIS_OK if successful, INIT_GAIN_ANALYSIS_ERROR if not */
int
ResetSampleFrequency ( long samplefreq ) {
int i;
/* zero out initial values */
for ( i = 0; i < MAX_ORDER; i++ )
linprebuf[i] = lstepbuf[i] = loutbuf[i] = rinprebuf[i] = rstepbuf[i] = routbuf[i] = 0.;
switch ( (int)(samplefreq) ) {
case 48000: freqindex = 0; break;
case 44100: freqindex = 1; break;
case 32000: freqindex = 2; break;
case 24000: freqindex = 3; break;
case 22050: freqindex = 4; break;
case 16000: freqindex = 5; break;
case 12000: freqindex = 6; break;
case 11025: freqindex = 7; break;
case 8000: freqindex = 8; break;
default: return INIT_GAIN_ANALYSIS_ERROR;
}
sampleWindow = (int) ceil (samplefreq * RMS_WINDOW_TIME);
lsum = 0.;
rsum = 0.;
totsamp = 0;
memset ( A, 0, sizeof(A) );
return INIT_GAIN_ANALYSIS_OK;
}
int
InitGainAnalysis ( long samplefreq )
{
if (ResetSampleFrequency(samplefreq) != INIT_GAIN_ANALYSIS_OK) {
return INIT_GAIN_ANALYSIS_ERROR;
}
linpre = linprebuf + MAX_ORDER;
rinpre = rinprebuf + MAX_ORDER;
lstep = lstepbuf + MAX_ORDER;
rstep = rstepbuf + MAX_ORDER;
lout = loutbuf + MAX_ORDER;
rout = routbuf + MAX_ORDER;
memset ( B, 0, sizeof(B) );
return INIT_GAIN_ANALYSIS_OK;
}
/* returns GAIN_ANALYSIS_OK if successful, GAIN_ANALYSIS_ERROR if not */
int
AnalyzeSamples ( const Float_t* left_samples, const Float_t* right_samples, size_t num_samples, int num_channels )
{
const Float_t* curleft;
const Float_t* curright;
long batchsamples;
long cursamples;
long cursamplepos;
int i;
if ( num_samples == 0 )
return GAIN_ANALYSIS_OK;
cursamplepos = 0;
batchsamples = num_samples;
switch ( num_channels) {
case 1: right_samples = left_samples;
case 2: break;
default: return GAIN_ANALYSIS_ERROR;
}
if ( num_samples < MAX_ORDER ) {
memcpy ( linprebuf + MAX_ORDER, left_samples , num_samples * sizeof(Float_t) );
memcpy ( rinprebuf + MAX_ORDER, right_samples, num_samples * sizeof(Float_t) );
}
else {
memcpy ( linprebuf + MAX_ORDER, left_samples, MAX_ORDER * sizeof(Float_t) );
memcpy ( rinprebuf + MAX_ORDER, right_samples, MAX_ORDER * sizeof(Float_t) );
}
while ( batchsamples > 0 ) {
cursamples = batchsamples > sampleWindow-totsamp ? sampleWindow - totsamp : batchsamples;
if ( cursamplepos < MAX_ORDER ) {
curleft = linpre+cursamplepos;
curright = rinpre+cursamplepos;
if (cursamples > MAX_ORDER - cursamplepos )
cursamples = MAX_ORDER - cursamplepos;
}
else {
curleft = left_samples + cursamplepos;
curright = right_samples + cursamplepos;
}
filter ( curleft , lstep + totsamp, cursamples, AYule[freqindex], BYule[freqindex], YULE_ORDER );
filter ( curright, rstep + totsamp, cursamples, AYule[freqindex], BYule[freqindex], YULE_ORDER );
filter ( lstep + totsamp, lout + totsamp, cursamples, AButter[freqindex], BButter[freqindex], BUTTER_ORDER );
filter ( rstep + totsamp, rout + totsamp, cursamples, AButter[freqindex], BButter[freqindex], BUTTER_ORDER );
for ( i = 0; i < cursamples; i++ ) { /* Get the squared values */
lsum += lout [totsamp+i] * lout [totsamp+i];
rsum += rout [totsamp+i] * rout [totsamp+i];
}
batchsamples -= cursamples;
cursamplepos += cursamples;
totsamp += cursamples;
if ( totsamp == sampleWindow ) { /* Get the Root Mean Square (RMS) for this set of samples */
double val = STEPS_per_dB * 10. * log10 ( (lsum+rsum) / totsamp * 0.5 + 1.e-37 );
int ival = (int) val;
if ( ival < 0 ) ival = 0;
if ( ival >= sizeof(A)/sizeof(*A) ) ival = sizeof(A)/sizeof(*A) - 1;
A [ival]++;
lsum = rsum = 0.;
memmove ( loutbuf , loutbuf + totsamp, MAX_ORDER * sizeof(Float_t) );
memmove ( routbuf , routbuf + totsamp, MAX_ORDER * sizeof(Float_t) );
memmove ( lstepbuf, lstepbuf + totsamp, MAX_ORDER * sizeof(Float_t) );
memmove ( rstepbuf, rstepbuf + totsamp, MAX_ORDER * sizeof(Float_t) );
totsamp = 0;
}
if ( totsamp > sampleWindow ) /* somehow I really screwed up: Error in programming! Contact author about totsamp > sampleWindow */
return GAIN_ANALYSIS_ERROR;
}
if ( num_samples < MAX_ORDER ) {
memmove ( linprebuf, linprebuf + num_samples, (MAX_ORDER-num_samples) * sizeof(Float_t) );
memmove ( rinprebuf, rinprebuf + num_samples, (MAX_ORDER-num_samples) * sizeof(Float_t) );
memcpy ( linprebuf + MAX_ORDER - num_samples, left_samples, num_samples * sizeof(Float_t) );
memcpy ( rinprebuf + MAX_ORDER - num_samples, right_samples, num_samples * sizeof(Float_t) );
}
else {
memcpy ( linprebuf, left_samples + num_samples - MAX_ORDER, MAX_ORDER * sizeof(Float_t) );
memcpy ( rinprebuf, right_samples + num_samples - MAX_ORDER, MAX_ORDER * sizeof(Float_t) );
}
return GAIN_ANALYSIS_OK;
}
static Float_t
analyzeResult ( Uint32_t* Array, size_t len )
{
Uint32_t elems;
Int32_t upper;
size_t i;
elems = 0;
for ( i = 0; i < len; i++ )
elems += Array[i];
if ( elems == 0 )
return GAIN_NOT_ENOUGH_SAMPLES;
upper = (Int32_t) ceil (elems * (1. - RMS_PERCENTILE));
for ( i = len; i-- > 0; ) {
if ( (upper -= Array[i]) <= 0 )
break;
}
return (Float_t) ((Float_t)PINK_REF - (Float_t)i / (Float_t)STEPS_per_dB);
}
Float_t
GetTitleGain ( void )
{
Float_t retval;
int i;
retval = analyzeResult ( A, sizeof(A)/sizeof(*A) );
for ( i = 0; i < sizeof(A)/sizeof(*A); i++ ) {
B[i] += A[i];
A[i] = 0;
}
for ( i = 0; i < MAX_ORDER; i++ )
linprebuf[i] = lstepbuf[i] = loutbuf[i] = rinprebuf[i] = rstepbuf[i] = routbuf[i] = 0.f;
totsamp = 0;
lsum = rsum = 0.;
return retval;
}
Float_t
GetAlbumGain ( void )
{
return analyzeResult ( B, sizeof(B)/sizeof(*B) );
}
/* end of gain_analysis.c */
|