File: container_prd.hh

package info (click to toggle)
voro++ 0.4.6+dfsg1-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster, sid
  • size: 1,372 kB
  • sloc: cpp: 6,384; perl: 232; makefile: 164
file content (654 lines) | stat: -rw-r--r-- 26,305 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
// Voro++, a 3D cell-based Voronoi library
//
// Author   : Chris H. Rycroft (LBL / UC Berkeley)
// Email    : chr@alum.mit.edu
// Date     : August 30th 2011

/** \file container_prd.hh
 * \brief Header file for the container_periodic_base and related classes. */

#ifndef VOROPP_CONTAINER_PRD_HH
#define VOROPP_CONTAINER_PRD_HH

#include <cstdio>
#include <vector>

#include "config.hh"
#include "common.hh"
#include "v_base.hh"
#include "cell.hh"
#include "c_loops.hh"
#include "v_compute.hh"
#include "unitcell.hh"
#include "rad_option.hh"

namespace voro {

/** \brief Class for representing a particle system in a 3D periodic
 * non-orthogonal periodic domain.
 *
 * This class represents a particle system in a three-dimensional
 * non-orthogonal periodic domain. The domain is defined by three periodicity
 * vectors (bx,0,0), (bxy,by,0), and (bxz,byz,bz) that represent a
 * parallelepiped. Internally, the class stores particles in the box 0<x<bx,
 * 0<y<by, 0<z<bz, and constructs periodic images of particles that displaced
 * by the three periodicity vectors when they are necessary for the
 * computation. The internal memory structure for this class is significantly
 * different from the container_base class in order to handle the dynamic
 * construction of these periodic images.
 *
 * The class is derived from the unitcell class, which encapsulates information
 * about the domain geometry, and the voro_base class, which encapsulates
 * information about the underlying computational grid. */
class container_periodic_base : public unitcell, public voro_base {
	public:
		/** The lower y index (inclusive) of the primary domain within
		 * the block structure. */
		int ey;
		/** The lower z index (inclusive) of the primary domain within
		 * the block structure. */
		int ez;
		/** The upper y index (exclusive) of the primary domain within
		 * the block structure. */
		int wy;
		/** The upper z index (exclusive) of the primary domain within
		 * the block structure. */
		int wz;
		/** The total size of the block structure (including images) in
		 * the y direction. */
		int oy;
		/** The total size of the block structure (including images) in
		 * the z direction. */
		int oz;
		/** The total number of blocks. */
		int oxyz;
		/** This array holds the numerical IDs of each particle in each
		 * computational box. */
		int **id;
		/** A two dimensional array holding particle positions. For the
		 * derived container_poly class, this also holds particle
		 * radii. */
		double **p;
		/** This array holds the number of particles within each
		 * computational box of the container. */
		int *co;
		/** This array holds the maximum amount of particle memory for
		 * each computational box of the container. If the number of
		 * particles in a particular box ever approaches this limit,
		 * more is allocated using the add_particle_memory() function.
		 */
		int *mem;
		/** An array holding information about periodic image
		 * construction at a given location. */
		char *img;
		/** The initial amount of memory to allocate for particles
		 * for each block. */
		const int init_mem;
		/** The amount of memory in the array structure for each
		 * particle. This is set to 3 when the basic class is
		 * initialized, so that the array holds (x,y,z) positions. If
		 * the container class is initialized as part of the derived
		 * class container_poly, then this is set to 4, to also hold
		 * the particle radii. */
		const int ps;
		container_periodic_base(double bx_,double bxy_,double by_,double bxz_,double byz_,double bz_,
				int nx_,int ny_,int nz_,int init_mem_,int ps);
		~container_periodic_base();
		/** Prints all particles in the container, including those that
		 * have been constructed in image blocks. */
		inline void print_all_particles() {
			int ijk,q;
			for(ijk=0;ijk<oxyz;ijk++) for(q=0;q<co[ijk];q++)
				printf("%d %g %g %g\n",id[ijk][q],p[ijk][ps*q],p[ijk][ps*q+1],p[ijk][ps*q+2]);
		}
		void region_count();
		/** Initializes the Voronoi cell prior to a compute_cell
		 * operation for a specific particle being carried out by a
		 * voro_compute class. The cell is initialized to be the
		 * pre-computed unit Voronoi cell based on planes formed by
		 * periodic images of the particle.
		 * \param[in,out] c a reference to a voronoicell object.
		 * \param[in] ijk the block that the particle is within.
		 * \param[in] q the index of the particle within its block.
		 * \param[in] (ci,cj,ck) the coordinates of the block in the
		 * 			 container coordinate system.
		 * \param[out] (i,j,k) the coordinates of the test block
		 * 		       relative to the voro_compute
		 * 		       coordinate system.
		 * \param[out] (x,y,z) the position of the particle.
		 * \param[out] disp a block displacement used internally by the
		 *		    compute_cell routine.
		 * \return False if the plane cuts applied by walls completely
		 * removed the cell, true otherwise. */
		template<class v_cell>
		inline bool initialize_voronoicell(v_cell &c,int ijk,int q,int ci,int cj,int ck,int &i,int &j,int &k,double &x,double &y,double &z,int &disp) {
			c=unit_voro;
			double *pp=p[ijk]+ps*q;
			x=*(pp++);y=*(pp++);z=*pp;
			i=nx;j=ey;k=ez;
			return true;
		}
		/** Initializes parameters for a find_voronoi_cell call within
		 * the voro_compute template.
		 * \param[in] (ci,cj,ck) the coordinates of the test block in
		 * 			 the container coordinate system.
		 * \param[in] ijk the index of the test block
		 * \param[out] (i,j,k) the coordinates of the test block
		 * 		       relative to the voro_compute
		 * 		       coordinate system.
		 * \param[out] disp a block displacement used internally by the
		 *		    find_voronoi_cell routine (but not needed
		 *		    in this instance.) */
		inline void initialize_search(int ci,int cj,int ck,int ijk,int &i,int &j,int &k,int &disp) {
			i=nx;j=ey;k=ez;
		}
		/** Returns the position of a particle currently being computed
		 * relative to the computational block that it is within. It is
		 * used to select the optimal worklist entry to use.
		 * \param[in] (x,y,z) the position of the particle.
		 * \param[in] (ci,cj,ck) the block that the particle is within.
		 * \param[out] (fx,fy,fz) the position relative to the block.
		 */
		inline void frac_pos(double x,double y,double z,double ci,double cj,double ck,double &fx,double &fy,double &fz) {
			fx=x-boxx*ci;
			fy=y-boxy*(cj-ey);
			fz=z-boxz*(ck-ez);
		}
		/** Calculates the index of block in the container structure
		 * corresponding to given coordinates.
		 * \param[in] (ci,cj,ck) the coordinates of the original block
		 * 			 in the current computation, relative
		 * 			 to the container coordinate system.
		 * \param[in] (ei,ej,ek) the displacement of the current block
		 * 			 from the original block.
		 * \param[in,out] (qx,qy,qz) the periodic displacement that
		 * 			     must be added to the particles
		 * 			     within the computed block.
		 * \param[in] disp a block displacement used internally by the
		 * 		    find_voronoi_cell and compute_cell routines
		 * 		    (but not needed in this instance.)
		 * \return The block index. */
		inline int region_index(int ci,int cj,int ck,int ei,int ej,int ek,double &qx,double &qy,double &qz,int &disp) {
			int qi=ci+(ei-nx),qj=cj+(ej-ey),qk=ck+(ek-ez);
			int iv(step_div(qi,nx));if(iv!=0) {qx=iv*bx;qi-=nx*iv;} else qx=0;
			create_periodic_image(qi,qj,qk);
			return qi+nx*(qj+oy*qk);
		}
		void create_all_images();
		void check_compartmentalized();
	protected:
		void add_particle_memory(int i);
		void put_locate_block(int &ijk,double &x,double &y,double &z);
		void put_locate_block(int &ijk,double &x,double &y,double &z,int &ai,int &aj,int &ak);
		/** Creates particles within an image block by copying them
		 * from the primary domain and shifting them. If the given
		 * block is aligned with the primary domain in the z-direction,
		 * the routine calls the simpler create_side_image routine
		 * where the image block may comprise of particles from up to
		 * two primary blocks. Otherwise is calls the more complex
		 * create_vertical_image where the image block may comprise of
		 * particles from up to four primary blocks.
		 * \param[in] (di,dj,dk) the coordinates of the image block to
		 *                       create. */
		inline void create_periodic_image(int di,int dj,int dk) {
			if(di<0||di>=nx||dj<0||dj>=oy||dk<0||dk>=oz)
				voro_fatal_error("Constructing periodic image for nonexistent point",VOROPP_INTERNAL_ERROR);
			if(dk>=ez&&dk<wz) {
				if(dj<ey||dj>=wy) create_side_image(di,dj,dk);
			} else create_vertical_image(di,dj,dk);
		}
		void create_side_image(int di,int dj,int dk);
		void create_vertical_image(int di,int dj,int dk);
		void put_image(int reg,int fijk,int l,double dx,double dy,double dz);
		inline void remap(int &ai,int &aj,int &ak,int &ci,int &cj,int &ck,double &x,double &y,double &z,int &ijk);
};

/** \brief Extension of the container_periodic_base class for computing regular
 * Voronoi tessellations.
 *
 * This class is an extension of the container_periodic_base that has routines
 * specifically for computing the regular Voronoi tessellation with no
 * dependence on particle radii. */
class container_periodic : public container_periodic_base, public radius_mono {
	public:
		container_periodic(double bx_,double bxy_,double by_,double bxz_,double byz_,double bz_,
				int nx_,int ny_,int nz_,int init_mem_);
		void clear();
		void put(int n,double x,double y,double z);
		void put(int n,double x,double y,double z,int &ai,int &aj,int &ak);
		void put(particle_order &vo,int n,double x,double y,double z);
		void import(FILE *fp=stdin);
		void import(particle_order &vo,FILE *fp=stdin);
		/** Imports a list of particles from an open file stream into
		 * the container. Entries of four numbers (Particle ID, x
		 * position, y position, z position) are searched for. If the
		 * file cannot be successfully read, then the routine causes a
		 * fatal error.
		 * \param[in] filename the name of the file to open and read
		 *                     from. */
		inline void import(const char* filename) {
			FILE *fp=safe_fopen(filename,"r");
			import(fp);
			fclose(fp);
		}
		/** Imports a list of particles from an open file stream into
		 * the container. Entries of four numbers (Particle ID, x
		 * position, y position, z position) are searched for. In
		 * addition, the order in which particles are read is saved
		 * into an ordering class. If the file cannot be successfully
		 * read, then the routine causes a fatal error.
		 * \param[in,out] vo the ordering class to use.
		 * \param[in] filename the name of the file to open and read
		 *                     from. */
		inline void import(particle_order &vo,const char* filename) {
			FILE *fp=safe_fopen(filename,"r");
			import(vo,fp);
			fclose(fp);
		}
		void compute_all_cells();
		double sum_cell_volumes();
		/** Dumps particle IDs and positions to a file.
		 * \param[in] vl the loop class to use.
		 * \param[in] fp a file handle to write to. */
		template<class c_loop>
		void draw_particles(c_loop &vl,FILE *fp) {
			double *pp;
			if(vl.start()) do {
				pp=p[vl.ijk]+3*vl.q;
				fprintf(fp,"%d %g %g %g\n",id[vl.ijk][vl.q],*pp,pp[1],pp[2]);
			} while(vl.inc());
		}
		/** Dumps all of the particle IDs and positions to a file.
		 * \param[in] fp a file handle to write to. */
		inline void draw_particles(FILE *fp=stdout) {
			c_loop_all_periodic vl(*this);
			draw_particles(vl,fp);
		}
		/** Dumps all of the particle IDs and positions to a file.
		 * \param[in] filename the name of the file to write to. */
		inline void draw_particles(const char *filename) {
			FILE *fp=safe_fopen(filename,"w");
			draw_particles(fp);
			fclose(fp);
		}
		/** Dumps particle positions in POV-Ray format.
		 * \param[in] vl the loop class to use.
		 * \param[in] fp a file handle to write to. */
		template<class c_loop>
		void draw_particles_pov(c_loop &vl,FILE *fp) {
			double *pp;
			if(vl.start()) do {
				pp=p[vl.ijk]+3*vl.q;
				fprintf(fp,"// id %d\nsphere{<%g,%g,%g>,s}\n",
						id[vl.ijk][vl.q],*pp,pp[1],pp[2]);
			} while(vl.inc());
		}
		/** Dumps all particle positions in POV-Ray format.
		 * \param[in] fp a file handle to write to. */
		inline void draw_particles_pov(FILE *fp=stdout) {
			c_loop_all_periodic vl(*this);
			draw_particles_pov(vl,fp);
		}
		/** Dumps all particle positions in POV-Ray format.
		 * \param[in] filename the name of the file to write to. */
		inline void draw_particles_pov(const char *filename) {
			FILE *fp=safe_fopen(filename,"w");
			draw_particles_pov(fp);
			fclose(fp);
		}
		/** Computes Voronoi cells and saves the output in gnuplot
		 * format.
		 * \param[in] vl the loop class to use.
		 * \param[in] fp a file handle to write to. */
		template<class c_loop>
		void draw_cells_gnuplot(c_loop &vl,FILE *fp) {
			voronoicell c;double *pp;
			if(vl.start()) do if(compute_cell(c,vl)) {
				pp=p[vl.ijk]+ps*vl.q;
				c.draw_gnuplot(*pp,pp[1],pp[2],fp);
			} while(vl.inc());
		}
		/** Computes all Voronoi cells and saves the output in gnuplot
		 * format.
		 * \param[in] fp a file handle to write to. */
		inline void draw_cells_gnuplot(FILE *fp=stdout) {
			c_loop_all_periodic vl(*this);
			draw_cells_gnuplot(vl,fp);
		}
		/** Compute all Voronoi cells and saves the output in gnuplot
		 * format.
		 * \param[in] filename the name of the file to write to. */
		inline void draw_cells_gnuplot(const char *filename) {
			FILE *fp=safe_fopen(filename,"w");
			draw_cells_gnuplot(fp);
			fclose(fp);
		}
		/** Computes Voronoi cells and saves the output in POV-Ray
		 * format.
		 * \param[in] vl the loop class to use.
		 * \param[in] fp a file handle to write to. */
		template<class c_loop>
		void draw_cells_pov(c_loop &vl,FILE *fp) {
			voronoicell c;double *pp;
			if(vl.start()) do if(compute_cell(c,vl)) {
				fprintf(fp,"// cell %d\n",id[vl.ijk][vl.q]);
				pp=p[vl.ijk]+ps*vl.q;
				c.draw_pov(*pp,pp[1],pp[2],fp);
			} while(vl.inc());
		}
		/** Computes all Voronoi cells and saves the output in POV-Ray
		 * format.
		 * \param[in] fp a file handle to write to. */
		inline void draw_cells_pov(FILE *fp=stdout) {
			c_loop_all_periodic vl(*this);
			draw_cells_pov(vl,fp);
		}
		/** Computes all Voronoi cells and saves the output in POV-Ray
		 * format.
		 * \param[in] filename the name of the file to write to. */
		inline void draw_cells_pov(const char *filename) {
			FILE *fp=safe_fopen(filename,"w");
			draw_cells_pov(fp);
			fclose(fp);
		}
		/** Computes the Voronoi cells and saves customized information
		 * about them.
		 * \param[in] vl the loop class to use.
		 * \param[in] format the custom output string to use.
		 * \param[in] fp a file handle to write to. */
		template<class c_loop>
		void print_custom(c_loop &vl,const char *format,FILE *fp) {
			int ijk,q;double *pp;
			if(contains_neighbor(format)) {
				voronoicell_neighbor c;
				if(vl.start()) do if(compute_cell(c,vl)) {
					ijk=vl.ijk;q=vl.q;pp=p[ijk]+ps*q;
					c.output_custom(format,id[ijk][q],*pp,pp[1],pp[2],default_radius,fp);
				} while(vl.inc());
			} else {
				voronoicell c;
				if(vl.start()) do if(compute_cell(c,vl)) {
					ijk=vl.ijk;q=vl.q;pp=p[ijk]+ps*q;
					c.output_custom(format,id[ijk][q],*pp,pp[1],pp[2],default_radius,fp);
				} while(vl.inc());
			}
		}
		void print_custom(const char *format,FILE *fp=stdout);
		void print_custom(const char *format,const char *filename);
		bool find_voronoi_cell(double x,double y,double z,double &rx,double &ry,double &rz,int &pid);
		/** Computes the Voronoi cell for a particle currently being
		 * referenced by a loop class.
		 * \param[out] c a Voronoi cell class in which to store the
		 * 		 computed cell.
		 * \param[in] vl the loop class to use.
		 * \return True if the cell was computed. If the cell cannot be
		 * computed because it was removed entirely for some reason,
		 * then the routine returns false. */
		template<class v_cell,class c_loop>
		inline bool compute_cell(v_cell &c,c_loop &vl) {
			return vc.compute_cell(c,vl.ijk,vl.q,vl.i,vl.j,vl.k);
		}
		/** Computes the Voronoi cell for given particle.
		 * \param[out] c a Voronoi cell class in which to store the
		 * 		 computed cell.
		 * \param[in] ijk the block that the particle is within.
		 * \param[in] q the index of the particle within the block.
		 * \return True if the cell was computed. If the cell cannot be
		 * computed because it was removed entirely for some reason,
		 * then the routine returns false. */
		template<class v_cell>
		inline bool compute_cell(v_cell &c,int ijk,int q) {
			int k(ijk/(nx*oy)),ijkt(ijk-(nx*oy)*k),j(ijkt/nx),i(ijkt-j*nx);
			return vc.compute_cell(c,ijk,q,i,j,k);
		}
		/** Computes the Voronoi cell for a ghost particle at a given
		 * location.
		 * \param[out] c a Voronoi cell class in which to store the
		 * 		 computed cell.
		 * \param[in] (x,y,z) the location of the ghost particle.
		 * \return True if the cell was computed. If the cell cannot be
		 * computed, if it is removed entirely by a wall or boundary
		 * condition, then the routine returns false. */
		template<class v_cell>
		inline bool compute_ghost_cell(v_cell &c,double x,double y,double z) {
			int ijk;
			put_locate_block(ijk,x,y,z);
			double *pp=p[ijk]+3*co[ijk]++;
			*(pp++)=x;*(pp++)=y;*(pp++)=z;
			bool q=compute_cell(c,ijk,co[ijk]-1);
			co[ijk]--;
			return q;
		}		
	private:
		voro_compute<container_periodic> vc;
		friend class voro_compute<container_periodic>;
};

/** \brief Extension of the container_periodic_base class for computing radical
 * Voronoi tessellations.
 *
 * This class is an extension of container_periodic_base that has routines
 * specifically for computing the radical Voronoi tessellation that depends
 * on the particle radii. */
class container_periodic_poly : public container_periodic_base, public radius_poly {
	public:
		container_periodic_poly(double bx_,double bxy_,double by_,double bxz_,double byz_,double bz_,
				int nx_,int ny_,int nz_,int init_mem_);
		void clear();
		void put(int n,double x,double y,double z,double r);
		void put(int n,double x,double y,double z,double r,int &ai,int &aj,int &ak);
		void put(particle_order &vo,int n,double x,double y,double z,double r);
		void import(FILE *fp=stdin);
		void import(particle_order &vo,FILE *fp=stdin);
		/** Imports a list of particles from an open file stream into
		 * the container_poly class. Entries of five numbers (Particle
		 * ID, x position, y position, z position, radius) are searched
		 * for. If the file cannot be successfully read, then the
		 * routine causes a fatal error.
		 * \param[in] filename the name of the file to open and read
		 *                     from. */
		inline void import(const char* filename) {
			FILE *fp=safe_fopen(filename,"r");
			import(fp);
			fclose(fp);
		}
		/** Imports a list of particles from an open file stream into
		 * the container_poly class. Entries of five numbers (Particle
		 * ID, x position, y position, z position, radius) are searched
		 * for. In addition, the order in which particles are read is
		 * saved into an ordering class. If the file cannot be
		 * successfully read, then the routine causes a fatal error.
		 * \param[in,out] vo the ordering class to use.
		 * \param[in] filename the name of the file to open and read
		 *                     from. */
		inline void import(particle_order &vo,const char* filename) {
			FILE *fp=safe_fopen(filename,"r");
			import(vo,fp);
			fclose(fp);
		}
		void compute_all_cells();
		double sum_cell_volumes();
		/** Dumps particle IDs, positions and radii to a file.
		 * \param[in] vl the loop class to use.
		 * \param[in] fp a file handle to write to. */
		template<class c_loop>
		void draw_particles(c_loop &vl,FILE *fp) {
			double *pp;
			if(vl.start()) do {
				pp=p[vl.ijk]+4*vl.q;
				fprintf(fp,"%d %g %g %g %g\n",id[vl.ijk][vl.q],*pp,pp[1],pp[2],pp[3]);
			} while(vl.inc());
		}
		/** Dumps all of the particle IDs, positions and radii to a
		 * file.
		 * \param[in] fp a file handle to write to. */
		inline void draw_particles(FILE *fp=stdout) {
			c_loop_all_periodic vl(*this);
			draw_particles(vl,fp);
		}
		/** Dumps all of the particle IDs, positions and radii to a
		 * file.
		 * \param[in] filename the name of the file to write to. */
		inline void draw_particles(const char *filename) {
			FILE *fp=safe_fopen(filename,"w");
			draw_particles(fp);
			fclose(fp);
		}
		/** Dumps particle positions in POV-Ray format.
		 * \param[in] vl the loop class to use.
		 * \param[in] fp a file handle to write to. */
		template<class c_loop>
		void draw_particles_pov(c_loop &vl,FILE *fp) {
			double *pp;
			if(vl.start()) do {
				pp=p[vl.ijk]+4*vl.q;
				fprintf(fp,"// id %d\nsphere{<%g,%g,%g>,%g}\n",
						id[vl.ijk][vl.q],*pp,pp[1],pp[2],pp[3]);
			} while(vl.inc());
		}
		/** Dumps all the particle positions in POV-Ray format.
		 * \param[in] fp a file handle to write to. */
		inline void draw_particles_pov(FILE *fp=stdout) {
			c_loop_all_periodic vl(*this);
			draw_particles_pov(vl,fp);
		}
		/** Dumps all the particle positions in POV-Ray format.
		 * \param[in] filename the name of the file to write to. */
		inline void draw_particles_pov(const char *filename) {
			FILE *fp(safe_fopen(filename,"w"));
			draw_particles_pov(fp);
			fclose(fp);
		}
		/** Computes Voronoi cells and saves the output in gnuplot
		 * format.
		 * \param[in] vl the loop class to use.
		 * \param[in] fp a file handle to write to. */
		template<class c_loop>
		void draw_cells_gnuplot(c_loop &vl,FILE *fp) {
			voronoicell c;double *pp;
			if(vl.start()) do if(compute_cell(c,vl)) {
				pp=p[vl.ijk]+ps*vl.q;
				c.draw_gnuplot(*pp,pp[1],pp[2],fp);
			} while(vl.inc());
		}
		/** Compute all Voronoi cells and saves the output in gnuplot
		 * format.
		 * \param[in] fp a file handle to write to. */
		inline void draw_cells_gnuplot(FILE *fp=stdout) {
			c_loop_all_periodic vl(*this);
			draw_cells_gnuplot(vl,fp);
		}
		/** Compute all Voronoi cells and saves the output in gnuplot
		 * format.
		 * \param[in] filename the name of the file to write to. */
		inline void draw_cells_gnuplot(const char *filename) {
			FILE *fp(safe_fopen(filename,"w"));
			draw_cells_gnuplot(fp);
			fclose(fp);
		}
		/** Computes Voronoi cells and saves the output in POV-Ray
		 * format.
		 * \param[in] vl the loop class to use.
		 * \param[in] fp a file handle to write to. */
		template<class c_loop>
		void draw_cells_pov(c_loop &vl,FILE *fp) {
			voronoicell c;double *pp;
			if(vl.start()) do if(compute_cell(c,vl)) {
				fprintf(fp,"// cell %d\n",id[vl.ijk][vl.q]);
				pp=p[vl.ijk]+ps*vl.q;
				c.draw_pov(*pp,pp[1],pp[2],fp);
			} while(vl.inc());
		}
		/** Computes all Voronoi cells and saves the output in POV-Ray
		 * format.
		 * \param[in] fp a file handle to write to. */
		inline void draw_cells_pov(FILE *fp=stdout) {
			c_loop_all_periodic vl(*this);
			draw_cells_pov(vl,fp);
		}
		/** Computes all Voronoi cells and saves the output in POV-Ray
		 * format.
		 * \param[in] filename the name of the file to write to. */
		inline void draw_cells_pov(const char *filename) {
			FILE *fp(safe_fopen(filename,"w"));
			draw_cells_pov(fp);
			fclose(fp);
		}
		/** Computes the Voronoi cells and saves customized information
		 * about them.
		 * \param[in] vl the loop class to use.
		 * \param[in] format the custom output string to use.
		 * \param[in] fp a file handle to write to. */
		template<class c_loop>
		void print_custom(c_loop &vl,const char *format,FILE *fp) {
			int ijk,q;double *pp;
			if(contains_neighbor(format)) {
				voronoicell_neighbor c;
				if(vl.start()) do if(compute_cell(c,vl)) {
					ijk=vl.ijk;q=vl.q;pp=p[ijk]+ps*q;
					c.output_custom(format,id[ijk][q],*pp,pp[1],pp[2],pp[3],fp);
				} while(vl.inc());
			} else {
				voronoicell c;
				if(vl.start()) do if(compute_cell(c,vl)) {
					ijk=vl.ijk;q=vl.q;pp=p[ijk]+ps*q;
					c.output_custom(format,id[ijk][q],*pp,pp[1],pp[2],pp[3],fp);
				} while(vl.inc());
			}
		}
		/** Computes the Voronoi cell for a particle currently being
		 * referenced by a loop class.
		 * \param[out] c a Voronoi cell class in which to store the
		 * 		 computed cell.
		 * \param[in] vl the loop class to use.
		 * \return True if the cell was computed. If the cell cannot be
		 * computed because it was removed entirely for some reason,
		 * then the routine returns false. */
		template<class v_cell,class c_loop>
		inline bool compute_cell(v_cell &c,c_loop &vl) {
			return vc.compute_cell(c,vl.ijk,vl.q,vl.i,vl.j,vl.k);
		}
		/** Computes the Voronoi cell for given particle.
		 * \param[out] c a Voronoi cell class in which to store the
		 * 		 computed cell.
		 * \param[in] ijk the block that the particle is within.
		 * \param[in] q the index of the particle within the block.
		 * \return True if the cell was computed. If the cell cannot be
		 * computed because it was removed entirely for some reason,
		 * then the routine returns false. */
		template<class v_cell>
		inline bool compute_cell(v_cell &c,int ijk,int q) {
			int k(ijk/(nx*oy)),ijkt(ijk-(nx*oy)*k),j(ijkt/nx),i(ijkt-j*nx);
			return vc.compute_cell(c,ijk,q,i,j,k);
		}
		/** Computes the Voronoi cell for a ghost particle at a given
		 * location.
		 * \param[out] c a Voronoi cell class in which to store the
		 * 		 computed cell.
		 * \param[in] (x,y,z) the location of the ghost particle.
		 * \param[in] r the radius of the ghost particle.
		 * \return True if the cell was computed. If the cell cannot be
		 * computed, if it is removed entirely by a wall or boundary
		 * condition, then the routine returns false. */
		template<class v_cell>
		inline bool compute_ghost_cell(v_cell &c,double x,double y,double z,double r) {
			int ijk;
			put_locate_block(ijk,x,y,z);
			double *pp=p[ijk]+4*co[ijk]++,tm=max_radius;
			*(pp++)=x;*(pp++)=y;*(pp++)=z;*pp=r;
			if(r>max_radius) max_radius=r;
			bool q=compute_cell(c,ijk,co[ijk]-1);
			co[ijk]--;max_radius=tm;
			return q;
		}
		void print_custom(const char *format,FILE *fp=stdout);
		void print_custom(const char *format,const char *filename);
		bool find_voronoi_cell(double x,double y,double z,double &rx,double &ry,double &rz,int &pid);
	private:
		voro_compute<container_periodic_poly> vc;
		friend class voro_compute<container_periodic_poly>;
};

}

#endif