1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
|
import sys
import uuid
import pytest
from vorta.keyring.abc import VortaKeyring
from vorta.utils import (
find_best_unit_for_sizes,
get_path_datasize,
is_system_tray_available,
normalize_path,
pretty_bytes,
sort_sizes,
)
def test_keyring():
UNICODE_PW = 'kjalsdfüadsfäadsfß'
REPO = f'ssh://asdf123@vorta-test-repo.{uuid.uuid4()}.com/./repo' # Random repo URL
keyring = VortaKeyring.get_keyring()
keyring.set_password('vorta-repo', REPO, UNICODE_PW)
assert keyring.get_password("vorta-repo", REPO) == UNICODE_PW
@pytest.mark.parametrize(
"input_sizes, expected_sorted",
[
# Basic ordering
(["1.0 GB", "2.0 MB", "3.0 KB"], ["3.0 KB", "2.0 MB", "1.0 GB"]),
# Multiple same units
(["3.0 GB", "2.0 GB", "1.0 GB"], ["1.0 GB", "2.0 GB", "3.0 GB"]),
# Multiple different units
(["2.0 MB", "3.0 GB", "1.0 KB", "5.0 GB"], ["1.0 KB", "2.0 MB", "3.0 GB", "5.0 GB"]),
# Larger to smaller units
(["1.0 YB", "1.0 ZB", "1.0 EB", "1.0 PB"], ["1.0 PB", "1.0 EB", "1.0 ZB", "1.0 YB"]),
# Skipping non-numeric sizes
(["2x MB", "3.0 KB", "apple GB", "1.0 GB"], ["3.0 KB", "1.0 GB"]),
# Skipping invalid suffix
(["1.0 XX", "5.0 YY", "9.0 ZZ", "1.0 MB"], ["1.0 MB"]),
# Floats with decimals
(["2.5 GB", "2.3 GB", "1.1 MB"], ["1.1 MB", "2.3 GB", "2.5 GB"]),
# Checking the same sizes across different units
(["1.0 MB", "1000.0 KB"], ["1000.0 KB", "1.0 MB"]),
# Handle empty lists
([], []),
],
)
def test_sort_sizes(input_sizes, expected_sorted):
assert sort_sizes(input_sizes) == expected_sorted
@pytest.mark.parametrize(
"precision, expected_unit",
[
(0, 1), # return units as "1" (represents KB), min=100KB
(1, 2), # return units as "2" (represents MB), min=0.1MB
(2, 2), # still returns KB, since 0.1MB < min=0.001 GB to allow for GB to be best_unit
],
)
def test_best_unit_for_sizes_precision(precision, expected_unit):
MB = 1000000
sizes = [int(0.1 * MB), 100 * MB, 2000 * MB]
best_unit = find_best_unit_for_sizes(sizes, metric=True, precision=precision)
assert best_unit == expected_unit
@pytest.mark.parametrize(
"sizes, expected_unit",
[
([], 0), # no sizes given but should still return "0" (represents bytes) as best representation
([102], 0), # non-metric size 102 < 0.1KB (102 < 0.1 * 1024), so it will return 0 instead of 1
([103], 1), # non-metric size 103 > 0.1KB (103 < 0.1 * 1024), so it will return 1
],
)
def test_best_unit_for_sizes_nonmetric(sizes, expected_unit):
best_unit = find_best_unit_for_sizes(sizes, metric=False, precision=1)
assert best_unit == expected_unit
@pytest.mark.parametrize(
"size, metric, precision, fixed_unit, expected_output",
[
(10**5, True, 1, 2, "0.1 MB"), # 100KB, metric, precision 1, fixed unit "2" (MB)
(10**6, True, 0, 2, "1 MB"), # 1MB, metric, precision 0, fixed unit "2" (MB)
(10**6, True, 1, 2, "1.0 MB"), # 1MB, metric, precision 1, fixed unit "2" (MB)
(1024 * 1024, False, 1, 2, "1.0 MiB"), # 1MiB, nonmetric, precision 1, fixed unit "2" (MiB)
],
)
def test_pretty_bytes_fixed_units(size, metric, precision, fixed_unit, expected_output):
"""
Test pretty bytes when specifying a fixed unit of measurement
"""
output = pretty_bytes(size, metric=metric, precision=precision, fixed_unit=fixed_unit)
assert output == expected_output
@pytest.mark.parametrize(
"size, metric, expected_output",
[
(10**6, True, "1.0 MB"), # 1MB, metric
(10**24, True, "1.0 YB"), # 1YB, metric
(10**30, True, "1000000.0 YB"), # test huge number, metric
(1024 * 1024, False, "1.0 MiB"), # 1MiB, nonmetric
(2**40 * 2**40, False, "1.0 YiB"), # 1YiB, nonmetric
],
)
def test_pretty_bytes_nonfixed_units(size, metric, expected_output):
# test pretty bytes when NOT specifying a fixed unit of measurement
output = pretty_bytes(size, metric=metric, precision=1)
assert output == expected_output
def test_normalize_path():
"""
Test that path is normalized for macOS, but does nothing for other platforms.
"""
input_path = '/Users/username/caf\u00e9/file.txt'
expected_output = '/Users/username/café/file.txt'
actual_output = normalize_path(input_path)
if sys.platform == 'darwin':
assert actual_output == expected_output
else:
assert actual_output == input_path
def test_get_path_datasize(tmpdir):
"""
Test that get_path_datasize() works correctly when passed excluded patterns.
"""
# Create a temporary directory for testing
test_dir = tmpdir.mkdir("test_dir")
test_file = test_dir.join("test_file.txt")
test_file.write("Hello, World!")
# Create a subdirectory with a file to exclude
excluded_dir = test_dir.mkdir("excluded_dir")
excluded_file = excluded_dir.join("excluded_file.txt")
excluded_file.write("Excluded file, should not be checked.")
exclude_patterns = [f"{excluded_dir}"]
# Test when the path is a directory
data_size, files_count = get_path_datasize(str(test_dir), exclude_patterns)
assert data_size == len("Hello, World!")
assert files_count == 1
# Test when the path is a file
data_size, files_count = get_path_datasize(str(test_file), exclude_patterns)
assert data_size == len("Hello, World!")
assert files_count == 1
# Test when the path is a directory with an excluded file
data_size, files_count = get_path_datasize(str(excluded_dir), exclude_patterns)
assert data_size == 0
assert files_count == 0
def test_is_system_tray_available(mocker):
"""
Sanity check to ensure proper behavior
"""
mocker.patch('PyQt6.QtWidgets.QSystemTrayIcon.isSystemTrayAvailable', return_value=False)
assert is_system_tray_available() is False
mocker.patch('PyQt6.QtWidgets.QSystemTrayIcon.isSystemTrayAvailable', return_value=True)
assert is_system_tray_available() is True
|