1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
|
#! /usr/bin/env python3
#
# Copyright 2009-2021 The VOTCA Development Team (http://www.votca.org)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import argparse
import importlib
import multiprocessing
import os
import shutil
import subprocess
import xml.etree.ElementTree as ET
from collections import defaultdict
from pathlib import Path
from typing import Any, Dict, List, NamedTuple
from xml.dom import minidom
from rdkit import Chem
import rdkit.Chem.Descriptors
import numpy as np
try:
importlib.import_module("rdkit")
except ModuleNotFoundError:
exc = ModuleNotFoundError(
"""'xtp_autogen_mapping' requires the 'rdkit' package: https://anaconda.org/conda-forge/rdkit"""
)
exc.__cause__ = None
raise exc
from rdkit import Chem
VERSION = '@PROJECT_VERSION@ #VOTCA_GIT_ID#'
PROGTITLE = 'THE VOTCA::XTP auto mapping generator'
VOTCAHEADER = f"""
==================================================
======== VOTCA (http://www.votca.org) ========
==================================================
{PROGTITLE}
please read and cite: @PROJECT_CITATION@
and submit bugs to @PROJECT_CONTACT@
votca_autogen_mapping, version {VERSION}
"""
DESCRIPTION = f"""{VOTCAHEADER}
Automatically generate a mapping file"""
# Hartree to eV
H2EV = 27.21138
class JobMetadata(NamedTuple):
"""Create a namedtuple with the data to call Orca."""
name: str
path_orca: str
functional: str
basis: str
RI: bool
threads: int
def search_cores() -> int:
"""Try to find the number of cores in the system."""
cpuinfo = Path("/proc/cpuinfo")
if not cpuinfo.exists():
return multiprocessing.cpu_count()
with open(cpuinfo, 'r') as handler:
lines = handler.readlines()
# Number of available CPUs
ncpus = len(list(filter(lambda x: "processor" in x, lines)))
# Look for hyperthreading
flags = next(filter(lambda x: "flags" in x, lines), None)
# ht is the flag for hyperthreading
if flags is not None and 'ht' in flags:
ncpus = ncpus / 2
return ncpus
def run_cmd(cmd: str):
"""Run a shell command."""
print("running: ", cmd)
result = subprocess.run(cmd, stdout=subprocess.PIPE,
stderr=subprocess.PIPE, shell=True)
if result.stderr:
print("command error: ", result.stderr)
def write_input(
input_file_name: str, crg_spin_coord: str, meta: JobMetadata, optimize: bool = True):
"""Write Orca input file."""
# number of cores to use
if meta.threads == "":
ncores = search_cores()
else:
ncores = meta.threads
# geometry optimization starts from MD structure for n, and n structure of e/h
ri_string = ' RIJCOSX' if meta.RI else ""
opt = "opt" if optimize else ""
chelpg = "! CHELPG" if optimize else ""
# Polar calculation
polar = "% elprop\npolar 1\nSolver CG\nend\n" if optimize else ""
# Input file
inp = f"""{crg_spin_coord}
%pal
nprocs {ncores}
end
! DFT {opt} {meta.functional} {meta.basis} {ri_string} SlowConv
! D3BJ
{chelpg}
{polar}
"""
with open(input_file_name, "w") as handler:
handler.write(inp)
def read_energies(logfile_name: str) -> List[float]:
"""parse SINGLE POINT ENERGIES."""
energies = []
with open(logfile_name, 'r') as logfile:
for line in logfile.readlines():
if 'FINAL SINGLE POINT ENERGY' in line:
energies.append(float(line.split()[-1]))
return energies
def optimize_geometry(state: str, meta: JobMetadata) -> List[float]:
"""Perform a geometry optimization using Orca."""
root = f"{meta.name}_{state}"
input_file_name = f"{root}.inp"
logfile_name = f"{root}.log"
errfile_name = f"{root}.err"
if state == 'n':
crg_spin_coord = f'* xyzfile 0 1 {meta.name}_MD.xyz'
elif state == 'e':
crg_spin_coord = f'* xyzfile -1 2 {meta.name}_n.xyz'
elif state == 'h':
crg_spin_coord = f'* xyzfile 1 2 {meta.name}_n.xyz'
# Write optimization Orca input
write_input(input_file_name, crg_spin_coord, meta)
# Call orca
orca_command = f"{meta.path_orca} {input_file_name} > {logfile_name} 2> {errfile_name}"
run_cmd(orca_command)
return read_energies(logfile_name)
def run_single_point(state: str, meta: JobMetadata):
"""Run a single point calculation with Orca."""
crg_spin_coord = f'* xyzfile 0 1 {meta.name}_{state}.xyz'
root = f"{meta.name}_{state}"
input_n_file_name = f"{root}_n.inp"
write_input(input_n_file_name, crg_spin_coord, meta, optimize=False)
# run ORCA again
logfile_n_name = f"{root}_n.log"
errfile_n_name = f"{root}_n.err"
orca_command2 = f"{meta.path_orca} {input_n_file_name} > {logfile_n_name} 2> {errfile_n_name}"
run_cmd(orca_command2)
# parse SINGLE POINT ENERGIES
return read_energies(logfile_n_name)
def process_charges_and_polarization(root: str) -> None:
"""Read charges and compute polarization."""
# parse CHELPG charges
logfile_name = f"{root}_log2mps.log"
errfile_name = f"{root}_log2mps.err"
log2mps_command = f"xtp_tools -e log2mps -c job_name=\"{root}\" > {logfile_name} 2> {errfile_name}"
run_cmd(log2mps_command)
# prep molpol.xml
options = ET.Element('options')
molpol = ET.SubElement(options, 'molpol')
mode = ET.SubElement(molpol, 'mode')
mode.text = 'qmpackage'
logname = ET.SubElement(molpol, 'logfile')
logname.text = f"{root}.log"
molpol_xml_str = minidom.parseString(
ET.tostring(options)).toprettyxml(indent=" ")
with open("molpol.xml", "w") as f:
f.write(molpol_xml_str)
# run molpol
logfile_name = f"{root}_molpol.log"
errfile_name = f"{root}_molpol.err"
molpol_command = f"xtp_tools -e molpol -o molpol.xml -c job_name=\"{root}\" > {logfile_name} 2> {errfile_name}"
os.system(molpol_command)
# copy optimized MPS_FILE
os.makedirs('../MP_FILES', exist_ok=True)
mpsfile = f"{root}_polar.mps"
mpsfile_store = f"../MP_FILES/{mpsfile}"
shutil.copy(mpsfile, mpsfile_store)
def optimize(state: str, meta: JobMetadata):
"""Optimize geometry, get CHELPG charges, polarizability tensor."""
root = f"{meta.name}_{state}"
energies = optimize_geometry(state, meta)
E_initial = energies[0]
E_final = energies[-1]
# copy optimized geometries
os.makedirs('../QC_FILES', exist_ok=True)
geofile = f"{root}.xyz"
geofile_store = f'../QC_FILES/{geofile}'
shutil.copy(geofile, geofile_store)
process_charges_and_polarization(root)
# if state is h or e, calculate a single energy for the neural molecule in the optimized geometry
if state != 'n':
energies = run_single_point(state, meta)
E_cross = energies[0]
else:
E_cross = 0.0
names = [f"E_{state}_{kind}" for kind in ("init", "final", "cross")]
return {name: value for name, value in zip(names, (E_initial, E_final, E_cross))}
def optimize_geometry_in_state(
mol: Chem.rdchem.Mol, states: List[str], meta: JobMetadata) -> Dict[str, float]:
"""Optimize the molecular geometry in the given staten."""
os.makedirs('generate', exist_ok=True)
basedir = os.getcwd()
os.chdir('generate')
# read the initial PDB file
mdXYZ_file_name = f'{meta.name}_MD.xyz'
Chem.MolToXYZFile(mol, mdXYZ_file_name)
# neutral
energies = optimize('n', meta)
# cation, if requested
if 'h' in states:
energies_h = optimize('h', meta)
energies.update(energies_h)
# anion, if requested
if 'e' in states:
energies_e = optimize('e', meta)
energies.update(energies_e)
os.chdir(basedir)
return energies
def generate_mapping(args: argparse.Namespace) -> None:
"""Generate the mapping files."""
# Read the molecule
mol = Chem.MolFromPDBFile(args.pdbfile, removeHs=False)
seg_name = Path(args.pdbfile).stem
if not args.mdname:
args.mdname = Chem.rdMolDescriptors.CalcMolFormula(mol)
msg = """No *mdname* (-m, --mdname) has been specified, setting it to the molecular
formula. If you used GROMACS, replace the entry in the generated mapping.xml with the name in
topol.top (or similar).
"""
print(msg)
if args.optimize:
segment_name = Path(args.pdbfile).stem
meta = JobMetadata(
name=segment_name, path_orca=args.orca, functional=args.functional,
basis=args.basis, RI=args.nori,threads=args.threads)
energies = optimize_geometry_in_state(mol, args.states, meta)
else:
# The default energy for any key is 0
energies = defaultdict(lambda: 0.0)
msg = """WARNING **The user didn't request an optimization**, therefore:
1. `qmcoords` and `multipoles` tags are going to be added to the mapping file but
the *xyz and *mps files, and the QC_FILES and MP_FILES directories
are not automatically generated, you must add them yourself.
2. Excitation and reorganization energies are all set to 0. You need to change
those values.
"""
print(msg)
# determine the rotatable bonds
rotable_bond = Chem.MolFromSmarts('[!$(*#*)&!D1]-&!@[!$(*#*)&!D1]')
rbonds = mol.GetSubstructMatches(rotable_bond)
bonds = [mol.GetBondBetweenAtoms(x, y).GetIdx() for x, y in rbonds]
mol1 = Chem.Mol(mol)
fragments = []
# fragment molecule based on the rotatable bonds
if bonds == []:
fragments.append(mol1)
else:
new_mol = Chem.FragmentOnBonds(mol1, bonds)
fragments = Chem.GetMolFrags(new_mol, asMols=True)
generate_xml_tree(mol, args.states, fragments,
seg_name, energies, args.mdname)
def generate_xml_tree(
mol: Chem.rdchem.Mol, states: List[str], fragments: List[Any],
seg_name: str, energies: Dict[str, float], md_name: str) -> None:
topology = ET.Element('topology')
molecules = ET.SubElement(topology, 'molecules')
molecule = ET.SubElement(molecules, 'molecule')
name = ET.SubElement(molecule, 'name')
name.text = seg_name
mdname = ET.SubElement(molecule, 'mdname')
mdname.text = md_name
segments = ET.SubElement(molecule, 'segments')
segment = ET.SubElement(segments, 'segment')
segment_name = ET.SubElement(segment, 'name')
segment_name.text = seg_name
# Add qmcoords, xyz, multipoles and polar files
add_state_files('n', segment, seg_name)
if 'h' in states:
add_state_files('h', segment, seg_name)
add_energies('h', segment, energies)
if 'e' in states:
add_state_files('e', segment, seg_name)
add_energies('e', segment, energies)
map2md = ET.SubElement(segment, 'map2md')
map2md.text = '0'
xmlfragments = ET.SubElement(segment, 'fragments')
# add the fragments into the xml tree
add_fragments(mol, fragments, xmlfragments)
xml_str = minidom.parseString(
ET.tostring(topology)).toprettyxml(indent=" ")
with open("mapping.xml", "w") as f:
f.write(xml_str)
def add_state_files(state: str, segment: ET.Element, seg_name: str) -> None:
"""Add the files for each state."""
segment_coord = ET.SubElement(segment, f'qmcoords_{state}')
segment_coord.text = f"QC_FILES/{seg_name}_{state}.xyz"
segment_mpoles = ET.SubElement(segment, f'multipoles_{state}')
segment_mpoles.text = f"MP_FILES/{seg_name}_{state}_polar.mps"
def add_energies(state: str, segment: ET.Element, energies: Dict[str, float]) -> None:
"""Add the energies for the states."""
# adiabatic excitation energy
segment_U_xX_nN = ET.SubElement(segment, f'U_xX_nN_{state}')
segment_U_xX_nN.text = format_energy(
energies, f"E_{state}_final", "E_n_final")
# reorg energy deexcitation
segment_U_nX_nN = ET.SubElement(
segment, f'U_nX_nN_{state}')
segment_U_nX_nN.text = format_energy(
energies, f"E_{state}_cross", "E_n_final")
# reorg energy excitation
segment_U_xN_xX = ET.SubElement(segment, f'U_xN_xX_{state}')
segment_U_xN_xX.text = format_energy(
energies, f"E_{state}_init", f"E_{state}_final")
def add_fragments(
mol: Chem.rdchem.Mol, fragments: List[Chem.rdchem.Mol],
xmlfragments: ET.Element) -> None:
"""Add fragments to the XML tree."""
for i, fragment in enumerate(fragments):
i += 1
filename = f"fragment{i}.pdb"
Chem.MolToPDBFile(fragment, filename)
conf = fragment.GetConformer()
xmlfragment = ET.SubElement(xmlfragments, 'fragment')
frag_name = ET.SubElement(xmlfragment, 'name')
frag_name.text = f'fragment{i}'
mdatoms = ET.SubElement(xmlfragment, 'mdatoms')
qmatoms = ET.SubElement(xmlfragment, 'qmatoms')
mpoles = ET.SubElement(xmlfragment, 'mpoles')
weights = ET.SubElement(xmlfragment, 'weights')
localframe = ET.SubElement(xmlfragment, 'localframe')
mdatoms_str = ""
qmatoms_str = ""
weights_str = ""
localframe_str = ""
idx = np.sort(check_collinear(fragment))
for atom in range(fragment.GetNumAtoms()):
this_element = fragment.GetAtoms()[atom].GetSymbol()
if this_element != "*":
this_pos = conf.GetAtomPosition(atom)
for index_atom in range(mol.GetNumAtoms()):
full_atom = mol.GetAtoms()[index_atom]
full_element = full_atom.GetPDBResidueInfo().GetName().replace(" ", "")
full_element_qm = full_atom.GetSymbol()
full_pos = mol.GetConformer().GetAtomPosition(index_atom)
if all(getattr(full_pos, x) == getattr(this_pos, x) for x in {'x', 'y', 'z'}):
mdatoms_str += f"0:{full_element}:{index_atom} "
qmatoms_str += f"{index_atom}:{full_element_qm} "
weights_str += f"{full_atom.GetMass()} "
mdatoms.text = mdatoms_str
qmatoms.text = qmatoms_str
mpoles.text = qmatoms_str
weights.text = weights_str
for label in ["".join(c for c in qmatoms_str.split()[i] if c.isdigit()) for i in idx]:
localframe_str += f"{label} "
localframe.text = localframe_str
def random_selection(fragment) -> np.ndarray:
n_atoms = fragment.GetNumAtoms()
# Choose 3 random idx (aka choose three random atoms in the fragment, excluding ghost atoms with symbol *)
atomic_list = [a for a in range(n_atoms) if fragment.GetAtoms()[
a].GetSymbol() != '*']
# Divide this list in H-list and rest_of_the_atoms-list
h_list = [a for a in atomic_list if fragment.GetAtoms()[
a].GetSymbol() == 'H']
rest_list = [a for a in atomic_list if fragment.GetAtoms()[
a].GetSymbol() != 'H']
size_sample = 0
# If the rest of the atoms are 3 or less
if len(rest_list) < 4:
# If there are no Hydrogens it spits out a sample size equal to the rest of the atoms list
if len(h_list) < 1:
size_sample = len(rest_list)
# If there are Hydrogens and the rest of the atoms are less than 3 (2 or 1)
if len(h_list) > 0 and len(rest_list) < 3:
# If there are at least 3 H
if len(h_list) > 2:
new_items = np.random.choice(
h_list, size=3 - len(rest_list), replace=False)
for i in new_items:
rest_list.append(i)
size_sample = len(rest_list)
# Otherwise just spit out the all atomic list
# (this because you can have max 1 H and 2 rest of the atoms)
else:
rest_list = atomic_list
size_sample = len(rest_list)
# Else the rest of the atoms are more than 3 then sampling randomly
# three of them it is fine
else:
size_sample = 3
idx = np.random.choice(rest_list, size=size_sample, replace=False)
return idx
def angle_fragment(idx: np.ndarray, fragment: Chem.rdchem.Mol) -> float:
try:
conformer = fragment.GetConformer()
if len(idx)>2:
pos_1, pos_2, pos_3 = [
conformer.GetAtomPosition(idx[x].item()) for x in range(3)]
vec1 = np.array([pos_1.x - pos_2.x, pos_1.y -
pos_2.y, pos_1.z - pos_2.z])
vec2 = np.array([pos_1.x - pos_3.x, pos_1.y -
pos_3.y, pos_1.z - pos_3.z])
# Sin(theta) with theta angle between vec1 and vec2
cp = np.linalg.norm(np.cross(vec1, vec2)) / \
(np.linalg.norm(vec1) * np.linalg.norm(vec2))
else:
cp = 1
except ZeroDivisionError:
# Just throw out a big value for the cp so check_collinear whill break immediatly
cp = 1
return cp
def check_collinear(fragment: Chem.rdchem.Mol) -> int:
"""Check if three random selected points are collinear."""
while True:
idx = random_selection(fragment)
cp_norm = angle_fragment(idx, fragment)
if cp_norm > 0.6:
break
return idx
def format_energy(energies: Dict[str, float], first: str, second: str) -> str:
"""Format the energy difference."""
diff = H2EV * (energies[first] - energies[second])
return str(diff)
def main():
"""Read the command line arguments."""
parser = argparse.ArgumentParser("xtp_autogen_mapping", usage=argparse.SUPPRESS,
description=DESCRIPTION, formatter_class=argparse.RawDescriptionHelpFormatter)
# Add the arguments to the parser
parser.add_argument("-pdb", "--pdbfile", required=True, type=exists,
help="PDB coordinate file")
parser.add_argument("-opt", "--optimize", action="store_true",
help="optimization of XYZ and MPS files")
parser.add_argument("-s", "--states", default="n", nargs="+",
help="which states to optimize", choices=["n", "e", "h"])
parser.add_argument("-orca", "--orca", default="/opt/orca-5.0.3/orca",
help="full path to ORCA executable")
parser.add_argument("-f", "--functional", default="PBE0",
help="DFT functional")
parser.add_argument(
"-b", "--basis", default="def2-tzvp", help="basis set")
parser.add_argument("--nori", action="store_false",
help="Do not to use the Resolution of Identity approximation")
parser.add_argument("-m", "--mdname", default="",
help="Name of the molecule in the MD topology")
parser.add_argument("-t", "--threads", default="",
help="Number of threads to use in ORCA")
parser.add_argument('--version', action='version',
version=f"%(prog)s {VERSION}")
args = parser.parse_args()
generate_mapping(args)
def exists(input_file: str) -> str:
"""Check if the input file exists."""
path = Path(input_file)
if not path.exists():
raise argparse.ArgumentTypeError(f"{input_file} doesn't exist!")
return path.absolute().as_posix()
if __name__ == "__main__":
main()
|