1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
|
/*
Copyright (c) 2009 Yahoo! Inc. All rights reserved. The copyrights
embodied in the content of this file are licensed under the BSD
(revised) open source license
*/
#include <stdio.h>
#include <float.h>
#include "cache.h"
#include "io.h"
#include "parse_regressor.h"
#include "parser.h"
#include "parse_args.h"
#include "sender.h"
#include "network.h"
#include "global_data.h"
using namespace std;
//
// Does string end with a certain substring?
//
bool ends_with(string const &fullString, string const &ending)
{
if (fullString.length() > ending.length()) {
return (fullString.compare(fullString.length() - ending.length(), ending.length(), ending) == 0);
} else {
return false;
}
}
size_t next_pow2(size_t x) {
int i = 0;
x = x > 0 ? x - 1 : 0;
while (x > 0) {
x >>= 1;
i++;
}
return 1 << i;
}
const float default_decay = 1.;
po::variables_map parse_args(int argc, char *argv[], boost::program_options::options_description& desc,
gd_vars& vars,
regressor &r, parser* par,
string& final_regressor_name)
{
vars.init();
global.program_name = argv[0];
global.sd = (shared_data *) malloc(sizeof(shared_data));
// Declare the supported options.
desc.add_options()
("help,h","Look here: http://hunch.net/~vw/ and click on Tutorial.")
("active_learning", "active learning mode")
("active_simulation", "active learning simulation mode")
("active_mellowness", po::value<float>(&global.active_c0)->default_value(8.f), "active learning mellowness parameter c_0. Default 8")
("adaptive", "use adaptive, individual learning rates.")
("exact_adaptive_norm", "use a more expensive exact norm for adaptive learning rates.")
("audit,a", "print weights of features")
("bit_precision,b", po::value<size_t>(),
"number of bits in the feature table")
("bfgs", "use bfgs optimization")
("cache,c", "Use a cache. The default is <data>.cache")
("cache_file", po::value< vector<string> >(), "The location(s) of cache_file.")
("compressed", "use gzip format whenever possible. If a cache file is being created, this option creates a compressed cache file. A mixture of raw-text & compressed inputs are supported with autodetection.")
("conjugate_gradient", "use conjugate gradient based optimization")
("nonormalize", "Do not normalize online updates")
("l1", po::value<float>(&global.l1_lambda)->default_value(0.0), "l_1 lambda")
("l2", po::value<float>(&global.l2_lambda)->default_value(0.0), "l_2 lambda")
("data,d", po::value< string >()->default_value(""), "Example Set")
("daemon", "persistent daemon mode on port 26542")
("num_children", po::value<size_t>(&global.num_children)->default_value(10), "number of children for persistent daemon mode")
("pid_file", po::value< string >(), "Write pid file in persistent daemon mode")
("decay_learning_rate", po::value<float>(&global.eta_decay_rate)->default_value(default_decay),
"Set Decay factor for learning_rate between passes")
("input_feature_regularizer", po::value< string >(&global.per_feature_regularizer_input), "Per feature regularization input file")
("final_regressor,f", po::value< string >(), "Final regressor")
("readable_model", po::value< string >(), "Output human-readable final regressor")
("hash", po::value< string > (), "how to hash the features. Available options: strings, all")
("hessian_on", "use second derivative in line search")
("version","Version information")
("ignore", po::value< vector<unsigned char> >(), "ignore namespaces beginning with character <arg>")
("initial_weight", po::value<float>(&global.initial_weight)->default_value(0.), "Set all weights to an initial value of 1.")
("initial_regressor,i", po::value< vector<string> >(), "Initial regressor(s)")
("initial_pass_length", po::value<size_t>(&global.pass_length)->default_value((size_t)-1), "initial number of examples per pass")
("initial_t", po::value<double>(&(global.sd->t))->default_value(1.), "initial t value")
("lda", po::value<size_t>(&global.lda), "Run lda with <int> topics")
("lda_alpha", po::value<float>(&global.lda_alpha)->default_value(0.1), "Prior on sparsity of per-document topic weights")
("lda_rho", po::value<float>(&global.lda_rho)->default_value(0.1), "Prior on sparsity of topic distributions")
("lda_D", po::value<float>(&global.lda_D)->default_value(10000.), "Number of documents")
("minibatch", po::value<size_t>(&global.minibatch)->default_value(1), "Minibatch size, for LDA")
("span_server", po::value<string>(&global.span_server)->default_value(""), "Location of server for setting up spanning tree")
("min_prediction", po::value<double>(&global.sd->min_label), "Smallest prediction to output")
("max_prediction", po::value<double>(&global.sd->max_label), "Largest prediction to output")
("mem", po::value<int>(&global.m)->default_value(15), "memory in bfgs")
("noconstant", "Don't add a constant feature")
("noop","do no learning")
("output_feature_regularizer_binary", po::value< string >(&global.per_feature_regularizer_output), "Per feature regularization output file")
("output_feature_regularizer_text", po::value< string >(&global.per_feature_regularizer_text), "Per feature regularization output file, in text")
("port", po::value<size_t>(),"port to listen on")
("power_t", po::value<float>(&vars.power_t)->default_value(0.5), "t power value")
("learning_rate,l", po::value<float>(&global.eta)->default_value(10),
"Set Learning Rate")
("passes", po::value<size_t>(&global.numpasses)->default_value(1),
"Number of Training Passes")
("termination", po::value<float>(&global.rel_threshold)->default_value(0.001),
"Termination threshold")
("predictions,p", po::value< string >(), "File to output predictions to")
("quadratic,q", po::value< vector<string> > (),
"Create and use quadratic features")
("quiet", "Don't output diagnostics")
("rank", po::value<size_t>(&global.rank)->default_value(0), "rank for matrix factorization.")
("random_weights", po::value<bool>(&global.random_weights), "make initial weights random")
("raw_predictions,r", po::value< string >(),
"File to output unnormalized predictions to")
("save_per_pass", "Save the model after every pass over data")
("sendto", po::value< vector<string> >(), "send examples to <host>")
("testonly,t", "Ignore label information and just test")
("loss_function", po::value<string>()->default_value("squared"), "Specify the loss function to be used, uses squared by default. Currently available ones are squared, classic, hinge, logistic and quantile.")
("quantile_tau", po::value<double>()->default_value(0.5), "Parameter \\tau associated with Quantile loss. Defaults to 0.5")
("unique_id", po::value<size_t>(&global.unique_id)->default_value(0),"unique id used for cluster parallel jobs")
("total", po::value<size_t>(&global.total)->default_value(1),"total number of nodes used in cluster parallel job")
("node", po::value<size_t>(&global.node)->default_value(0),"node number in cluster parallel job")
("sort_features", "turn this on to disregard order in which features have been defined. This will lead to smaller cache sizes")
("ngram", po::value<size_t>(), "Generate N grams")
("skips", po::value<size_t>(), "Generate skips in N grams. This in conjunction with the ngram tag can be used to generate generalized n-skip-k-gram.");
global.sd->queries = 0;
global.sd->example_number = 0;
global.sd->weighted_examples = 0.;
global.sd->old_weighted_examples = 0.;
global.sd->weighted_labels = 0.;
global.sd->total_features = 0;
global.sd->sum_loss = 0.0;
global.sd->sum_loss_since_last_dump = 0.0;
global.sd->dump_interval = exp(1.);
global.sd->gravity = 0.;
global.sd->contraction = 1.;
global.sd->min_label = 0.;
global.sd->max_label = 1.;
global.reg_mode = 0;
global.local_example_number = 0;
global.bfgs = false;
global.hessian_on = false;
global.stride = 1;
global.num_bits = 18;
global.default_bits = true;
global.daemon = false;
global.final_prediction_sink.begin = global.final_prediction_sink.end=global.final_prediction_sink.end_array = NULL;
global.raw_prediction = -1;
global.print = print_result;
global.lda = 0;
global.random_weights = false;
global.per_feature_regularizer_input = "";
global.per_feature_regularizer_output = "";
global.per_feature_regularizer_text = "";
global.ring_size = 1 << 8;
global.nonormalize = false;
global.binary_label = false;
global.adaptive = false;
global.add_constant = true;
global.exact_adaptive_norm = false;
global.audit = false;
global.active = false;
global.active_simulation =false;
global.reg = &r;
global.save_per_pass = false;
po::positional_options_description p;
// Be friendly: if -d was left out, treat positional param as data file
p.add("data", -1);
po::variables_map vm;
po::store(po::command_line_parser(argc, argv).
style(po::command_line_style::default_style ^ po::command_line_style::allow_guessing).
options(desc).positional(p).run(), vm);
po::notify(vm);
global.sd->weighted_unlabeled_examples = global.sd->t;
global.initial_t = global.sd->t;
if (vm.count("help") || argc == 1) {
/* upon direct query for help -- spit it out to stdout */
cout << "\n" << desc << "\n";
exit(0);
}
if (vm.count("quiet"))
global.quiet = true;
else
global.quiet = false;
if (vm.count("active_simulation"))
global.active_simulation = true;
if (vm.count("active_learning") && !global.active_simulation)
global.active = true;
if (vm.count("adaptive") || vm.count("exact_adaptive_norm")) {
global.adaptive = true;
if (vm.count("exact_adaptive_norm"))
{
global.exact_adaptive_norm = true;
if (vm.count("nonormalize"))
cout << "Options don't make sense. You can't use an exact norm and not normalize." << endl;
}
global.stride = 2;
}
if (vm.count("bfgs") || vm.count("conjugate_gradient")) {
global.bfgs = true;
global.stride = 4;
if (vm.count("hessian_on") || global.m==0) {
global.hessian_on = true;
}
if (!global.quiet) {
if (global.m>0)
cerr << "enabling BFGS based optimization ";
else
cerr << "enabling conjugate gradient optimization via BFGS ";
if (global.hessian_on)
cerr << "with curvature calculation" << endl;
else
cerr << "**without** curvature calculation" << endl;
}
if (global.numpasses < 2)
{
cout << "you must make at least 2 passes to use BFGS" << endl;
exit(1);
}
}
if (vm.count("version") || argc == 1) {
/* upon direct query for version -- spit it out to stdout */
cout << version << "\n";
exit(0);
}
if(vm.count("ngram")){
global.ngram = vm["ngram"].as<size_t>();
if(!vm.count("skip_gram")) cerr << "You have chosen to generate " << global.ngram << "-grams" << endl;
if(vm.count("sort_features"))
{
cerr << "ngram is incompatible with sort_features. " << endl;
exit(1);
}
}
if(vm.count("skips"))
{
global.skips = vm["skips"].as<size_t>();
if(!vm.count("ngram"))
{
cout << "You can not skip unless ngram is > 1" << endl;
exit(1);
}
cerr << "You have chosen to generate " << global.skips << "-skip-" << global.ngram << "-grams" << endl;
if(global.skips > 4)
{
cout << "*********************************" << endl;
cout << "Generating these features might take quite some time" << endl;
cout << "*********************************" << endl;
}
}
if (vm.count("bit_precision"))
{
global.default_bits = false;
global.num_bits = vm["bit_precision"].as< size_t>();
if (global.num_bits > 29)
{
cout << "Only 29 or fewer bits allowed. If this is a serious limit, speak up." << endl;
exit(1);
}
}
if (vm.count("daemon") || vm.count("pid_file")) {
global.daemon = true;
// allow each child to process up to 1e5 connections
global.numpasses = (size_t) 1e5;
}
string data_filename = vm["data"].as<string>();
if (vm.count("compressed") || ends_with(data_filename, ".gz"))
set_compressed(par);
if(vm.count("sort_features"))
par->sort_features = true;
if (global.num_bits > 30) {
cerr << "The system limits at 30 bits of precision!\n" << endl;
exit(1);
}
if (vm.count("quadratic"))
{
global.pairs = vm["quadratic"].as< vector<string> >();
if (!global.quiet)
{
cerr << "creating quadratic features for pairs: ";
for (vector<string>::iterator i = global.pairs.begin(); i != global.pairs.end();i++) {
cerr << *i << " ";
if (i->length() > 2)
cerr << endl << "warning, ignoring characters after the 2nd.\n";
if (i->length() < 2) {
cerr << endl << "error, quadratic features must involve two sets.\n";
exit(0);
}
}
cerr << endl;
}
}
for (size_t i = 0; i < 256; i++)
global.ignore[i] = false;
global.ignore_some = false;
if (vm.count("ignore"))
{
vector<unsigned char> ignore = vm["ignore"].as< vector<unsigned char> >();
for (vector<unsigned char>::iterator i = ignore.begin(); i != ignore.end();i++)
{
global.ignore[*i] = true;
global.ignore_some = true;
}
if (!global.quiet)
{
cerr << "ignoring namespaces beginning with: ";
for (vector<unsigned char>::iterator i = ignore.begin(); i != ignore.end();i++)
cerr << *i << " ";
cerr << endl;
}
}
// matrix factorization enabled
if (global.rank > 0) {
// store linear + 2*rank weights per index, round up to power of two
float temp = ceilf(logf((float)(global.rank*2+1)) / logf (2.f));
global.stride = 1 << (int) temp;
global.random_weights = true;
if (vm.count("adaptive") || vm.count("exact_adaptive_norm"))
{
cerr << "adaptive is not implemented for matrix factorization" << endl;
exit (1);
}
if (vm.count("bfgs") || vm.count("conjugate_gradient"))
{
cerr << "bfgs is not implemented for matrix factorization" << endl;
exit (1);
}
}
if (vm.count("noconstant"))
global.add_constant = false;
if (vm.count("nonormalize"))
global.nonormalize = true;
if (vm.count("lda"))
{
par->sort_features = true;
float temp = ceilf(logf((float)(global.lda*2+1)) / logf (2.f));
global.stride = 1 << (int) temp;
global.random_weights = true;
global.add_constant = false;
}
if (vm.count("lda") && global.eta > 1.)
{
cerr << "your learning rate is too high, setting it to 1" << endl;
global.eta = min(global.eta,1.f);
}
if (!vm.count("lda"))
global.eta *= pow(global.sd->t, (double)vars.power_t);
if (vm.count("minibatch")) {
size_t minibatch2 = next_pow2(global.minibatch);
global.ring_size = global.ring_size > minibatch2 ? global.ring_size : minibatch2;
}
parse_regressor_args(vm, r, final_regressor_name, global.quiet);
parse_source_args(vm,par,global.quiet,global.numpasses);
if (vm.count("readable_model"))
global.text_regressor_name = vm["readable_model"].as<string>();
if (vm.count("active_c0"))
global.active_c0 = vm["active_c0"].as<float>();
if (vm.count("save_per_pass"))
global.save_per_pass = true;
if (vm.count("min_prediction"))
global.sd->min_label = vm["min_prediction"].as<double>();
if (vm.count("max_prediction"))
global.sd->max_label = vm["max_prediction"].as<double>();
if (vm.count("min_prediction") || vm.count("max_prediction") || vm.count("testonly"))
set_minmax = noop_mm;
string loss_function;
if(vm.count("loss_function"))
loss_function = vm["loss_function"].as<string>();
else
loss_function = "squaredloss";
double loss_parameter = 0.0;
if(vm.count("quantile_tau"))
loss_parameter = vm["quantile_tau"].as<double>();
if (global.rank != 0) {
loss_function = "classic";
cerr << "Forcing classic squared loss for matrix factorization" << endl;
}
r.loss = getLossFunction(loss_function, loss_parameter);
global.loss = r.loss;
// global.eta *= pow(global.sd->t, vars.power_t);
if (global.eta_decay_rate != default_decay && global.numpasses == 1)
cerr << "Warning: decay_learning_rate has no effect when there is only one pass" << endl;
if (pow((double)global.eta_decay_rate, (double)global.numpasses) < 0.0001 )
cerr << "Warning: the learning rate for the last pass is multiplied by: " << pow((double)global.eta_decay_rate, (double)global.numpasses)
<< " adjust --decay_learning_rate larger to avoid this." << endl;
//parse_source_args(vm,par,global.quiet,global.numpasses);
if (!global.quiet)
{
cerr << "Num weight bits = " << global.num_bits << endl;
cerr << "learning rate = " << global.eta << endl;
cerr << "initial_t = " << global.sd->t << endl;
cerr << "power_t = " << vars.power_t << endl;
if (global.numpasses > 1)
cerr << "decay_learning_rate = " << global.eta_decay_rate << endl;
if (global.rank > 0)
cerr << "rank = " << global.rank << endl;
}
if (vm.count("predictions")) {
if (!global.quiet)
cerr << "predictions = " << vm["predictions"].as< string >() << endl;
if (strcmp(vm["predictions"].as< string >().c_str(), "stdout") == 0)
{
push(global.final_prediction_sink, (size_t) 1);//stdout
}
else
{
const char* fstr = (vm["predictions"].as< string >().c_str());
int f = fileno(fopen(fstr,"w"));
if (f < 0)
cerr << "Error opening the predictions file: " << fstr << endl;
push(global.final_prediction_sink, (size_t) f);
}
}
if (vm.count("raw_predictions")) {
if (!global.quiet)
cerr << "raw predictions = " << vm["raw_predictions"].as< string >() << endl;
if (strcmp(vm["raw_predictions"].as< string >().c_str(), "stdout") == 0)
global.raw_prediction = 1;//stdout
else
global.raw_prediction = fileno(fopen(vm["raw_predictions"].as< string >().c_str(), "w"));
}
if (vm.count("audit"))
global.audit = true;
parse_send_args(vm, global.pairs);
if (vm.count("testonly"))
{
if (!global.quiet)
cerr << "only testing" << endl;
global.training = false;
if (global.lda > 0)
global.eta = 0;
}
else
global.training = true;
if (global.l1_lambda < 0.) {
cerr << "l1_lambda should be nonnegative: resetting from " << global.l1_lambda << " to 0" << endl;
global.l1_lambda = 0.;
}
if (global.l2_lambda < 0.) {
cerr << "l2_lambda should be nonnegative: resetting from " << global.l2_lambda << " to 0" << endl;
global.l2_lambda = 0.;
}
global.reg_mode += (global.l1_lambda > 0.) ? 1 : 0;
global.reg_mode += (global.l2_lambda > 0.) ? 2 : 0;
if (!global.quiet)
{
if (global.reg_mode %2)
cerr << "using l1 regularization" << endl;
if (global.reg_mode > 1)
cerr << "using l2 regularization" << endl;
}
return vm;
}
|