1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
|
#-*- R -*-
## Script from Fourth Edition of `Modern Applied Statistics with S'
# Chapter 11 Exploratory Multivariate Analysis
library(MASS)
postscript(file="ch11.ps", width=8, height=6, pointsize=9)
options(echo=T, width=65, digits=5)
# 11.1 Visualization methods
# ir <- rbind(iris[,,1], iris[,,2], iris[,,3])
ir <- rbind(iris3[,,1], iris3[,,2], iris3[,,3])
ir.species <- factor(c(rep("s", 50), rep("c", 50), rep("v", 50)))
(ir.pca <- princomp(log(ir), cor = T))
summary(ir.pca)
plot(ir.pca)
ir.pc <- predict(ir.pca)
eqscplot(ir.pc[, 1:2], type = "n",
xlab = "first principal component",
ylab = "second principal component")
text(ir.pc[, 1:2], labels = as.character(ir.species),
col = 3 + unclass(ir.species))
lcrabs <- log(crabs[, 4:8])
crabs.grp <- factor(c("B", "b", "O", "o")[rep(1:4, each = 50)])
(lcrabs.pca <- princomp(lcrabs))
loadings(lcrabs.pca)
lcrabs.pc <- predict(lcrabs.pca)
dimnames(lcrabs.pc) <- list(NULL, paste("PC", 1:5, sep = ""))
if(F) { # needs interaction with XGobi
library(xgobi)
xgobi(lcrabs, colors = c("SkyBlue", "SlateBlue", "Orange",
"Red")[rep(1:4, each = 50)])
xgobi(lcrabs, glyphs = 12 + 5*rep(0:3, each = 50, 4))
}
ir.scal <- cmdscale(dist(ir), k = 2, eig = T)
ir.scal$points[, 2] <- -ir.scal$points[, 2]
eqscplot(ir.scal$points, type = "n")
text(ir.scal$points, labels = as.character(ir.species),
col = 3 + unclass(ir.species), cex = 0.8)
distp <- dist(ir)
dist2 <- dist(ir.scal$points)
sum((distp - dist2)^2)/sum(distp^2)
ir.sam <- sammon(dist(ir[-143,]))
eqscplot(ir.sam$points, type = "n")
text(ir.sam$points, labels = as.character(ir.species[-143]),
col = 3 + unclass(ir.species), cex = 0.8)
ir.iso <- isoMDS(dist(ir[-143,]))
eqscplot(ir.iso$points, type = "n")
text(ir.iso$points, labels = as.character(ir.species[-143]),
col = 3 + unclass(ir.species), cex = 0.8)
cr.scale <- 0.5 * log(crabs$CL * crabs$CW)
slcrabs <- lcrabs - cr.scale
cr.means <- matrix(0, 2, 5)
cr.means[1,] <- colMeans(slcrabs[crabs$sex == "F", ])
cr.means[2,] <- colMeans(slcrabs[crabs$sex == "M", ])
dslcrabs <- slcrabs - cr.means[as.numeric(crabs$sex), ]
lcrabs.sam <- sammon(dist(dslcrabs))
eqscplot(lcrabs.sam$points, type = "n", xlab = "", ylab = "")
text(lcrabs.sam$points, labels = as.character(crabs.grp))
fgl.iso <- isoMDS(dist(as.matrix(fgl[-40, -10])))
eqscplot(fgl.iso$points, type = "n", xlab = "", ylab = "", axes = F)
# either
# for(i in seq(along = levels(fgl$type))) {
# set <- fgl$type[-40] == levels(fgl$type)[i]
# points(fgl.iso$points[set,], pch = 18, cex = 0.6, col = 2 + i)}
# key(text = list(levels(fgl$type), col = 3:8))
# or
text(fgl.iso$points,
labels = c("F", "N", "V", "C", "T", "H")[fgl$type[-40]],
cex = 0.6)
fgl.iso3 <- isoMDS(dist(as.matrix(fgl[-40, -10])), k = 3)
# S: brush(fgl.iso3$points)
fgl.col <- c("SkyBlue", "SlateBlue", "Orange", "Orchid",
"Green", "HotPink")[fgl$type]
# xgobi(fgl.iso3$points, colors = fgl.col)
library(class)
gr <- somgrid(topo = "hexagonal")
crabs.som <- batchSOM(lcrabs, gr, c(4, 4, 2, 2, 1, 1, 1, 0, 0))
plot(crabs.som)
bins <- as.numeric(knn1(crabs.som$code, lcrabs, 0:47))
plot(crabs.som$grid, type = "n")
symbols(crabs.som$grid$pts[, 1], crabs.som$grid$pts[, 2],
circles = rep(0.4, 48), inches = F, add = T)
text(crabs.som$grid$pts[bins, ] + rnorm(400, 0, 0.1),
as.character(crabs.grp))
crabs.som2 <- SOM(lcrabs, gr); plot(crabs.som2)
state <- state.x77[, 2:7]; row.names(state) <- state.abb
biplot(princomp(state, cor = T), pc.biplot = T, cex = 0.7,
expand = 0.8)
library(fastICA)
nICA <- 4
crabs.ica <- fastICA(crabs[, 4:8], nICA)
Z <- crabs.ica$S
par(mfrow = c(2, nICA))
for(i in 1:nICA) boxplot(Z[, i] ~ crabs.grp)
par(mfrow = c(1, 1))
# S: stars(state.x77[, c(7, 4, 6, 2, 5, 3)], byrow = T)
stars(state.x77[, c(7, 4, 6, 2, 5, 3)])
parcoord(state.x77[, c(7, 4, 6, 2, 5, 3)])
parcoord(log(ir)[, c(3, 4, 2, 1)], col = 1 + (0:149)%/%50)
# 11.2 Cluster analysis
swiss.x <- as.matrix(swiss[,-1])
library(cluster)
# h <- hclust(dist(swiss.x), method = "connected")
h <- hclust(dist(swiss.x), method = "single")
plclust(h)
cutree(h, 3)
# S: plclust( clorder(h, cutree(h, 3) ))
pltree(diana(swiss.x))
par(mfrow = c(1, 1))
h <- hclust(dist(swiss.x), method = "average")
initial <- tapply(swiss.x, list(rep(cutree(h, 3),
ncol(swiss.x)), col(swiss.x)), mean)
dimnames(initial) <- list(NULL, dimnames(swiss.x)[[2]])
km <- kmeans(swiss.x, initial)
(swiss.pca <- princomp(swiss.x))
swiss.px <- predict(swiss.pca)
dimnames(km$centers)[[2]] <- dimnames(swiss.x)[[2]]
swiss.centers <- predict(swiss.pca, km$centers)
eqscplot(swiss.px[, 1:2], type = "n",
xlab = "first principal component",
ylab = "second principal component")
text(swiss.px[, 1:2], labels = km$cluster)
points(swiss.centers[,1:2], pch = 3, cex = 3)
if(interactive()) identify(swiss.px[, 1:2], cex = 0.5)
swiss.pam <- pam(swiss.px, 3)
summary(swiss.pam)
eqscplot(swiss.px[, 1:2], type = "n",
xlab = "first principal component",
ylab = "second principal component")
text(swiss.px[,1:2], labels = swiss.pam$clustering)
points(swiss.pam$medoid[,1:2], pch = 3, cex = 3)
fanny(swiss.px, 3)
## From the on-line Errata:
##
## `The authors of mclust have chosen to re-use the name for a
## completely incompatible package. We can no longer recommend its
## use, and the code given in the first printing does not work in R's
## mclust-2.x.'
##
library(mclust) # 2.x equivalent commands
h <- hc(modelName = "VVV", swiss.x)
(mh <- as.vector(hclass(h, 3)))
z <- me(modelName = "VVV", swiss.x, z = 0.5*(unmap(mh)+1/3))
eqscplot(swiss.px[, 1:2], type = "n",
xlab = "first principal component",
ylab = "second principal component")
text(swiss.px[, 1:2], labels = max.col(z$z))
vals <- EMclust(swiss.x) # all possible models, 0:9 clusters.
(sm <- summary(vals, swiss.x))
eqscplot(swiss.px[, 1:2], type = "n",
xlab = "first principal component",
ylab = "second principal component")
text(swiss.px[, 1:2], labels = sm$classification)
# 11.3 Factor analysis
ability.FA <- factanal(covmat = ability.cov, factors = 1)
ability.FA
(ability.FA <- update(ability.FA, factors = 2))
#summary(ability.FA)
round(loadings(ability.FA) %*% t(loadings(ability.FA)) +
diag(ability.FA$uniq), 3)
# loadings(rotate(ability.FA, rotation = "oblimin"))
if(FALSE) {
par(pty = "s")
L <- loadings(ability.FA)
eqscplot(L, xlim = c(0,1), ylim = c(0,1))
if(interactive()) identify(L, dimnames(L)[[1]])
oblirot <- rotate(loadings(ability.FA), rotation = "oblimin")
naxes <- solve(oblirot$tmat)
arrows(rep(0, 2), rep(0, 2), naxes[,1], naxes[,2])
}
# 11.4 Discrete multivariate analysis
caith <- as.matrix(caith)
names(dimnames(caith)) <- c("eyes", "hair")
mosaicplot(caith, color = T)
House <- xtabs(Freq ~ Type + Infl + Cont + Sat, housing)
mosaicplot(House, color = T)
corresp(caith)
caith2 <- caith
dimnames(caith2)[[2]] <- c("F", "R", "M", "D", "B")
par(mfcol = c(1, 3))
plot(corresp(caith2, nf = 2)); title("symmetric")
plot(corresp(caith2, nf = 2), type = "rows"); title("rows")
plot(corresp(caith2, nf = 2), type = "col"); title("columns")
par(mfrow = c(1, 1))
farms.mca <- mca(farms, abbrev = T) # Use levels as names
plot(farms.mca, cex = rep(0.7, 2))
# End of ch11
|