1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
|
#-*- R -*-
## Script from Fourth Edition of `Modern Applied Statistics with S'
# Chapter 15 Spatial Statistics
library(MASS)
postscript(file="ch15.ps", width=8, height=8, pointsize=9)
options(echo = TRUE, width=65, digits=5)
library(spatial)
# 15.1 Spatial interpolation and smoothing
par(mfrow=c(2,2), pty = "s")
topo.ls <- surf.ls(2, topo)
trsurf <- trmat(topo.ls, 0, 6.5, 0, 6.5, 30)
eqscplot(trsurf, , xlab = "", ylab = "", type = "n")
contour(trsurf, levels = seq(600, 1000, 25), add = T)
points(topo)
title("Degree=2")
topo.ls <- surf.ls(3, topo)
trsurf <- trmat(topo.ls, 0, 6.5, 0, 6.5, 30)
eqscplot(trsurf, , xlab = "", ylab = "", type = "n")
contour(trsurf, levels = seq(600, 1000, 25), add = T)
points(topo)
title("Degree=3")
topo.ls <- surf.ls(4, topo)
trsurf <- trmat(topo.ls, 0, 6.5, 0, 6.5, 30)
eqscplot(trsurf, , xlab = "", ylab = "", type = "n")
contour(trsurf, levels = seq(600, 1000, 25), add = T)
points(topo)
title("Degree=4")
topo.ls <- surf.ls(6, topo)
trsurf <- trmat(topo.ls, 0, 6.5, 0, 6.5, 30)
eqscplot(trsurf, , xlab = "", ylab = "", type = "n")
contour(trsurf, levels = seq(600, 1000, 25), add = T)
points(topo)
title("Degree=6")
library(lattice)
topo.ls <- surf.ls(4, topo)
trsurf <- trmat(topo.ls, 0, 6.5, 0, 6.5, 30)
trsurf[c("x", "y")] <- expand.grid(x=trsurf$x, y=trsurf$y)
plt1 <- levelplot(z ~ x * y, trsurf, aspect=1,
at = seq(650, 1000, 10), xlab = "", ylab = "")
plt2 <- wireframe(z ~ x * y, trsurf, aspect=c(1, 0.5),
screen = list(z = -30, x = -60))
print(plt1, position = c(0, 0, 0.5, 1), more=T)
print(plt2, position = c(0.45, 0, 1, 1))
par(mfcol = c(2, 2), pty = "s")
topo.loess <- loess(z ~ x * y, topo, degree = 2, span = 0.25,
normalize = F)
topo.mar <- list(x = seq(0, 6.5, 0.1), y = seq(0, 6.5, 0.1))
topo.lo <- predict(topo.loess, expand.grid(topo.mar), se = T)
eqscplot(topo.mar, xlab = "fit", ylab = "", type = "n")
contour(topo.mar$x, topo.mar$y, topo.lo$fit,
levels = seq(700, 1000, 25), add = T)
points(topo)
eqscplot(topo.mar, xlab = "standard error", ylab = "", type = "n")
contour(topo.mar$x,topo.mar$y,topo.lo$se.fit,
levels = seq(5, 25, 5), add = T)
title("Loess degree = 2")
points(topo)
topo.loess <- loess(z ~ x * y, topo, degree = 1, span = 0.25, normalize = F)
topo.lo <- predict(topo.loess, expand.grid(topo.mar), se=T)
eqscplot(topo.mar, xlab = "fit", ylab = "", type = "n")
contour(topo.mar$x,topo.mar$y,topo.lo$fit, levels = seq(700, 1000, 25),
add = T)
points(topo)
eqscplot(topo.mar, xlab = "standard error", ylab = "", type = "n")
contour(topo.mar$x,topo.mar$y,topo.lo$se.fit, levels = seq(5, 25, 5),
add = T)
title("Loess degree = 1")
points(topo)
library(akima)
par(mfrow = c(1, 2), pty= "s")
topo.int <- interp.old(topo$x, topo$y, topo$z)
eqscplot(topo.int, xlab = "interp default", ylab = "", type = "n")
contour(topo.int, levels = seq(600, 1000, 25), add = T)
points(topo)
topo.mar <- list(x = seq(0, 6.5, 0.1), y = seq(0, 6.5, 0.1))
topo.int2 <- interp.old(topo$x, topo$y, topo$z, topo.mar$x, topo.mar$y,
ncp = 4, extrap = T)
eqscplot(topo.int2, xlab = "interp", ylab = "", type = "n")
contour(topo.int2, levels = seq(600, 1000, 25), add = T)
points(topo)
# 15.2 Kriging
par(mfrow = c(2, 2), pty = "s")
topo.ls <- surf.ls(2, topo)
trsurf <- trmat(topo.ls, 0, 6.5, 0, 6.5, 30)
eqscplot(trsurf, , xlab = "", ylab = "", type = "n")
contour(trsurf, levels = seq(600, 1000, 25), add = T)
points(topo)
title("LS trend surface")
topo.gls <- surf.gls(2, expcov, topo, d = 0.7)
trsurf <- trmat(topo.gls, 0, 6.5, 0, 6.5, 30)
eqscplot(trsurf, , xlab = "", ylab = "", type = "n")
contour(trsurf, levels = seq(600, 1000, 25), add = T)
points(topo)
title("GLS trend surface")
prsurf <- prmat(topo.gls, 0, 6.5, 0, 6.5, 50)
eqscplot(prsurf, , xlab = "", ylab = "", type = "n")
contour(prsurf, levels = seq(600, 1000, 25), add = T)
points(topo)
title("Kriging prediction")
sesurf <- semat(topo.gls, 0, 6.5, 0, 6.5, 30)
eqscplot(sesurf, , xlab = "", ylab = "", type = "n")
contour(sesurf, levels = c(20, 25), add = T)
points(topo)
title("Kriging s.e.")
par(mfrow = c(2, 2), pty = "m")
topo.kr <- surf.ls(2, topo)
correlogram(topo.kr, 25)
d <- seq(0, 7, 0.1)
lines(d, expcov(d, 0.7))
variogram(topo.kr, 25)
## left panel of Figure 15.7
topo.kr <- surf.gls(2, expcov, topo, d=0.7)
correlogram(topo.kr, 25)
lines(d, expcov(d, 0.7))
lines(d, gaucov(d, 1.0, 0.3), lty = 3) # try nugget effect
## right panel
topo.kr <- surf.ls(0, topo)
correlogram(topo.kr, 25)
lines(d, gaucov(d, 2, 0.05))
par(mfrow = c(2, 2), pty = "s")
## top row of Figure 15.8
topo.kr <- surf.gls(2, gaucov, topo, d = 1, alph = 0.3)
prsurf <- prmat(topo.kr, 0, 6.5, 0, 6.5, 50)
eqscplot(prsurf, , xlab = "fit", ylab = "", type = "n")
contour(prsurf, levels = seq(600, 1000, 25), add = T)
points(topo)
sesurf <- semat(topo.kr, 0, 6.5, 0, 6.5, 25)
eqscplot(sesurf, , xlab = "standard error", ylab = "", type = "n")
contour(sesurf, levels = c(15, 20, 25), add = T)
points(topo)
## bottom row of Figure 15.8
topo.kr <- surf.gls(0, gaucov, topo, d = 2, alph = 0.05,
nx = 10000)
prsurf <- prmat(topo.kr, 0, 6.5, 0, 6.5, 50)
eqscplot(prsurf, , xlab = "fit", ylab = "", type = "n")
contour(prsurf, levels = seq(600, 1000, 25), add = T)
points(topo)
sesurf <- semat(topo.kr, 0, 6.5, 0, 6.5, 25)
eqscplot(sesurf, , xlab = "standard error", ylab = "", type = "n")
contour(sesurf, levels = c(15, 20, 25), add = T)
points(topo)
# 15.3 Point process analysis
library(spatial)
pines <- ppinit("pines.dat")
par(mfrow = c(2, 2), pty = "s")
plot(pines, xlim = c(0, 10), ylim = c(0, 10),
xlab = "", ylab = "", xaxs = "i", yaxs = "i")
plot(Kfn(pines,5), type = "s", xlab = "distance", ylab = "L(t)")
lims <- Kenvl(5, 100, Psim(72))
lines(lims$x, lims$l, lty = 2)
lines(lims$x, lims$u, lty = 2)
ppregion(pines)
plot(Kfn(pines, 1.5), type = "s",
xlab = "distance", ylab = "L(t)")
lims <- Kenvl(1.5, 100, Strauss(72, 0.2, 0.7))
lines(lims$x, lims$a, lty = 2)
lines(lims$x, lims$l, lty = 2)
lines(lims$x, lims$u, lty = 2)
pplik(pines, 0.7)
lines(Kaver(1.5, 100, Strauss(72, 0.15, 0.7)), lty = 3)
# End of ch15
|