1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
|
#-*- R -*-
## Script from Fourth Edition of `Modern Applied Statistics with S'
# Chapter 16 Optimization and Mazimum Likelihood Estimation
library(MASS)
postscript(file="ch16.ps", width=8, height=8, pointsize=9)
options(echo = T, width=65, digits=5)
# 16.3 General optimization
attach(geyser)
truehist(waiting, xlim = c(35, 110), ymax = 0.04, h = 5)
wait.dns <- density(waiting, n = 512, width = "SJ")
lines(wait.dns, lty = 2)
lmix2 <- deriv3(
~ -log(p*dnorm((x-u1)/s1)/s1 + (1-p)*dnorm((x-u2)/s2)/s2),
c("p", "u1", "s1", "u2", "s2"),
function(x, p, u1, s1, u2, s2) NULL)
(p0 <- c(p = mean(waiting < 70), u1 = 50, s1 = 5, u2 = 80, s2 = 5))
## using optim
mix.obj <- function(p, x)
{
e <- p[1] * dnorm((x - p[2])/p[3])/p[3] +
(1 - p[1]) * dnorm((x - p[4])/p[5])/p[5]
if(any(e <= 0)) Inf else -sum(log(e))
}
optim(p0, mix.obj, x = waiting)$par # Nelder-Mead
optim(p0, mix.obj, x = waiting, method = "BFGS",
control = list(parscale= c(0.1, rep(1, 4))))$par
# with derivatives
lmix2a <- deriv(
~ -log(p*dnorm((x-u1)/s1)/s1 + (1-p)*dnorm((x-u2)/s2)/s2),
c("p", "u1", "s1", "u2", "s2"),
function(x, p, u1, s1, u2, s2) NULL)
mix.gr <- function(p, x) {
u1 <- p[2]; s1 <- p[3]; u2 <- p[4]; s2 <- p[5]; p <- p[1]
colSums(attr(lmix2a(x, p, u1, s1, u2, s2), "gradient")) }
optim(p0, mix.obj, mix.gr, x = waiting, method = "BFGS",
control = list(parscale= c(0.1, rep(1, 4))))$par
mix.nl0 <- optim(p0, mix.obj, mix.gr, method = "L-BFGS-B", hessian = T,
lower = c(0, -Inf, 0, -Inf, 0),
upper = c(1, rep(Inf, 4)), x = waiting)
rbind(est = mix.nl0$par, se = sqrt(diag(solve(mix.nl0$hessian))))
dmix2 <- function(x, p, u1, s1, u2, s2)
p * dnorm(x, u1, s1) + (1-p) * dnorm(x, u2, s2)
attach(as.list(mix.nl0$par))
wait.fdns <- list(x = wait.dns$x,
y = dmix2(wait.dns$x, p, u1, s1, u2, s2))
lines(wait.fdns)
par(usr = c(0, 1, 0, 1))
legend(0.1, 0.9, c("Normal mixture", "Nonparametric"),
lty = c(1, 2), bty = "n")
pmix2 <- deriv(~ p*pnorm((x-u1)/s1) + (1-p)*pnorm((x-u2)/s2),
"x", function(x, p, u1, s1, u2, s2) {})
pr0 <- (seq(along = waiting) - 0.5)/length(waiting)
x0 <- x1 <- as.vector(sort(waiting)) ; del <- 1; i <- 0
while((i <- 1 + 1) < 10 && abs(del) > 0.0005) {
pr <- pmix2(x0, p, u1, s1, u2, s2)
del <- (pr - pr0)/attr(pr, "gradient")
x0 <- x0 - 0.5*del
cat(format(del <- max(abs(del))), "\n")
}
detach()
par(pty = "s")
plot(x0, x1, xlim = range(x0, x1), ylim = range(x0, x1),
xlab = "Model quantiles", ylab = "Waiting time")
abline(0, 1)
par(pty = "m")
mix1.obj <- function(p, x, y)
{
q <- exp(p[1] + p[2]*y)
q <- q/(1 + q)
e <- q * dnorm((x - p[3])/p[4])/p[4] +
(1 - q) * dnorm((x - p[5])/p[6])/p[6]
if(any(e <= 0)) Inf else -sum(log(e))
}
p1 <- mix.nl0$par; tmp <- as.vector(p1[1])
p2 <- c(a = log(tmp/(1-tmp)), b = 0, p1[-1])
mix.nl1 <- optim(p2, mix1.obj, method = "L-BFGS-B",
lower = c(-Inf, -Inf, -Inf, 0, -Inf, 0),
upper = rep(Inf, 6), hessian = T,
x = waiting[-1], y = duration[-299])
rbind(est = mix.nl1$par, se = sqrt(diag(solve(mix.nl1$hessian))))
if(!exists("bwt")) {
attach(birthwt)
race <- factor(race, labels=c("white", "black", "other"))
ptd <- factor(ptl > 0)
ftv <- factor(ftv); levels(ftv)[-(1:2)] <- "2+"
bwt <- data.frame(low=factor(low), age, lwt, race,
smoke=(smoke>0), ptd, ht=(ht>0), ui=(ui>0), ftv)
detach(); rm(race, ptd, ftv)
}
logitreg <- function(x, y, wt = rep(1, length(y)),
intercept = T, start = rep(0, p), ...)
{
fmin <- function(beta, X, y, w) {
p <- plogis(X %*% beta)
-sum(2 * w * ifelse(y, log(p), log(1-p)))
}
gmin <- function(beta, X, y, w) {
eta <- X %*% beta; p <- plogis(eta)
-2 * matrix(w *dlogis(eta) * ifelse(y, 1/p, -1/(1-p)), 1) %*% X
}
if(is.null(dim(x))) dim(x) <- c(length(x), 1)
dn <- dimnames(x)[[2]]
if(!length(dn)) dn <- paste("Var", 1:ncol(x), sep="")
p <- ncol(x) + intercept
if(intercept) {x <- cbind(1, x); dn <- c("(Intercept)", dn)}
if(is.factor(y)) y <- (unclass(y) != 1)
fit <- optim(start, fmin, gmin, X = x, y = y, w = wt,
method = "BFGS", ...)
names(fit$par) <- dn
cat("\nCoefficients:\n"); print(fit$par)
# R: use fit$value and fit$convergence
cat("\nResidual Deviance:", format(fit$value), "\n")
if(fit$convergence > 0)
cat("\nConvergence code:", fit$convergence, "\n")
invisible(fit)
}
options(contrasts = c("contr.treatment", "contr.poly"))
X <- model.matrix(terms(low ~ ., data=bwt), data = bwt)[, -1]
logitreg(X, bwt$low)
AIDSfit <- function(y, z, start=rep(mean(y), ncol(z)), ...)
{
deviance <- function(beta, y, z) {
mu <- z %*% beta
2 * sum(mu - y - y*log(mu/y)) }
grad <- function(beta, y, z) {
mu <- z %*% beta
2 * t(1 - y/mu) %*% z }
optim(start, deviance, grad, lower = 0, y = y, z = z,
method = "L-BFGS-B", ...)
}
Y <- scan()
12 14 33 50 67 74 123 141 165 204 253 246 240
library(nnet) # for class.ind
s <- seq(0, 13.999, 0.01); tint <- 1:14
X <- expand.grid(s, tint)
Z <- matrix(pweibull(pmax(X[,2] - X[,1],0), 2.5, 10),length(s))
Z <- Z[,2:14] - Z[,1:13]
Z <- t(Z) %*% class.ind(factor(floor(s/2))) * 0.01
round(AIDSfit(Y, Z)$par)
rm(s, X, Y, Z)
# End of ch16
|