File: ch16.R

package info (click to toggle)
vr 7.2.12-1
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 2,228 kB
  • ctags: 182
  • sloc: ansic: 2,393; makefile: 28; sh: 28
file content (168 lines) | stat: -rwxr-xr-x 5,329 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
#-*- R -*-

## Script from Fourth Edition of `Modern Applied Statistics with S'

# Chapter 16   Optimization and Mazimum Likelihood Estimation

library(MASS)
postscript(file="ch16.ps", width=8, height=8, pointsize=9)
options(echo = T, width=65, digits=5)

# 16.3 General optimization

attach(geyser)
truehist(waiting, xlim = c(35, 110), ymax = 0.04, h = 5)
wait.dns <- density(waiting, n = 512, width = "SJ")
lines(wait.dns, lty = 2)

lmix2 <- deriv3(
     ~ -log(p*dnorm((x-u1)/s1)/s1 + (1-p)*dnorm((x-u2)/s2)/s2),
     c("p", "u1", "s1", "u2", "s2"),
     function(x, p, u1, s1, u2, s2) NULL)

(p0 <- c(p = mean(waiting < 70), u1 = 50, s1 = 5, u2 = 80, s2 = 5))

## using optim

mix.obj <- function(p, x)
{
  e <- p[1] * dnorm((x - p[2])/p[3])/p[3] +
       (1 - p[1]) * dnorm((x - p[4])/p[5])/p[5]
  if(any(e <= 0)) Inf else -sum(log(e))
}
optim(p0, mix.obj, x = waiting)$par # Nelder-Mead

optim(p0, mix.obj, x = waiting, method = "BFGS",
     control = list(parscale= c(0.1, rep(1, 4))))$par

# with derivatives
lmix2a <- deriv(
     ~ -log(p*dnorm((x-u1)/s1)/s1 + (1-p)*dnorm((x-u2)/s2)/s2),
     c("p", "u1", "s1", "u2", "s2"),
     function(x, p, u1, s1, u2, s2) NULL)
mix.gr <- function(p, x) {
   u1 <- p[2]; s1 <- p[3]; u2 <- p[4]; s2 <- p[5]; p <- p[1]
   colSums(attr(lmix2a(x, p, u1, s1, u2, s2), "gradient")) }

optim(p0, mix.obj, mix.gr, x = waiting, method = "BFGS",
     control = list(parscale= c(0.1, rep(1, 4))))$par

mix.nl0 <- optim(p0, mix.obj, mix.gr, method = "L-BFGS-B", hessian = T,
                lower = c(0, -Inf, 0, -Inf, 0),
                upper = c(1, rep(Inf, 4)), x = waiting)
rbind(est = mix.nl0$par, se = sqrt(diag(solve(mix.nl0$hessian))))

dmix2 <- function(x, p, u1, s1, u2, s2)
             p * dnorm(x, u1, s1) + (1-p) * dnorm(x, u2, s2)
attach(as.list(mix.nl0$par))
wait.fdns <- list(x = wait.dns$x,
                  y = dmix2(wait.dns$x, p, u1, s1, u2, s2))
lines(wait.fdns)
par(usr = c(0, 1, 0, 1))
legend(0.1, 0.9, c("Normal mixture", "Nonparametric"),
       lty = c(1, 2), bty = "n")

pmix2 <- deriv(~ p*pnorm((x-u1)/s1) + (1-p)*pnorm((x-u2)/s2),
               "x", function(x, p, u1, s1, u2, s2) {})
pr0 <- (seq(along = waiting) - 0.5)/length(waiting)
x0 <- x1 <- as.vector(sort(waiting)) ; del <- 1; i <- 0
while((i <- 1 + 1) < 10 && abs(del) > 0.0005) {
  pr <- pmix2(x0, p, u1, s1, u2, s2)
  del <- (pr - pr0)/attr(pr, "gradient")
  x0 <- x0 - 0.5*del
  cat(format(del <- max(abs(del))), "\n")
}
detach()
par(pty = "s")
plot(x0, x1, xlim = range(x0, x1), ylim = range(x0, x1),
     xlab = "Model quantiles", ylab = "Waiting time")
abline(0, 1)
par(pty = "m")



mix1.obj <- function(p, x, y)
{
  q <- exp(p[1] + p[2]*y)
  q <- q/(1 + q)
  e <- q * dnorm((x - p[3])/p[4])/p[4] +
       (1 - q) * dnorm((x - p[5])/p[6])/p[6]
  if(any(e <= 0)) Inf else -sum(log(e))
}
p1 <- mix.nl0$par; tmp <- as.vector(p1[1])
p2 <- c(a = log(tmp/(1-tmp)), b = 0, p1[-1])
mix.nl1 <- optim(p2, mix1.obj, method = "L-BFGS-B",
                lower = c(-Inf, -Inf, -Inf, 0, -Inf, 0),
                upper = rep(Inf, 6), hessian = T,
                x = waiting[-1], y = duration[-299])
rbind(est = mix.nl1$par, se = sqrt(diag(solve(mix.nl1$hessian))))


if(!exists("bwt")) {
  attach(birthwt)
  race <- factor(race, labels=c("white", "black", "other"))
  ptd <- factor(ptl > 0)
  ftv <- factor(ftv); levels(ftv)[-(1:2)] <- "2+"
  bwt <- data.frame(low=factor(low), age, lwt, race,
	   smoke=(smoke>0), ptd, ht=(ht>0), ui=(ui>0), ftv)
  detach(); rm(race, ptd, ftv)
}

logitreg <- function(x, y, wt = rep(1, length(y)),
               intercept = T, start = rep(0, p), ...)
{
  fmin <- function(beta, X, y, w) {
      p <- plogis(X %*% beta)
      -sum(2 * w * ifelse(y, log(p), log(1-p)))
  }
  gmin <- function(beta, X, y, w) {
      eta <- X %*% beta; p <- plogis(eta)
      -2 * matrix(w *dlogis(eta) * ifelse(y, 1/p, -1/(1-p)), 1) %*% X
  }
  if(is.null(dim(x))) dim(x) <- c(length(x), 1)
  dn <- dimnames(x)[[2]]
  if(!length(dn)) dn <- paste("Var", 1:ncol(x), sep="")
  p <- ncol(x) + intercept
  if(intercept) {x <- cbind(1, x); dn <- c("(Intercept)", dn)}
  if(is.factor(y)) y <- (unclass(y) != 1)
  fit <- optim(start, fmin, gmin, X = x, y = y, w = wt,
               method = "BFGS", ...)
  names(fit$par) <- dn
  cat("\nCoefficients:\n"); print(fit$par)
  # R: use fit$value and fit$convergence
  cat("\nResidual Deviance:", format(fit$value), "\n")
  if(fit$convergence > 0)
      cat("\nConvergence code:", fit$convergence, "\n")
  invisible(fit)
}

options(contrasts = c("contr.treatment", "contr.poly"))
X <- model.matrix(terms(low ~ ., data=bwt), data = bwt)[, -1]
logitreg(X, bwt$low)

AIDSfit <- function(y, z, start=rep(mean(y), ncol(z)), ...)
{
  deviance <- function(beta, y, z) {
      mu <- z %*% beta
      2 * sum(mu - y - y*log(mu/y)) }
  grad <- function(beta, y, z) {
      mu <- z %*% beta
      2 * t(1 - y/mu) %*% z }
  optim(start, deviance, grad, lower = 0, y = y, z = z,
        method = "L-BFGS-B", ...)
}

Y <- scan()
12 14 33 50 67 74 123 141 165 204 253 246 240

library(nnet) # for class.ind
s <- seq(0, 13.999, 0.01); tint <- 1:14
X <- expand.grid(s, tint)
Z <- matrix(pweibull(pmax(X[,2] - X[,1],0), 2.5, 10),length(s))
Z <- Z[,2:14] - Z[,1:13]
Z <- t(Z) %*% class.ind(factor(floor(s/2))) * 0.01
round(AIDSfit(Y, Z)$par)
rm(s, X, Y, Z)

# End of ch16