1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
|
#-*- R -*-
## Script from Fourth Edition of `Modern Applied Statistics with S'
# Chapter 3 S Language
library(MASS)
options(echo = T, width=65, digits=5, height=9999)
# from Chapter 2
powers.of.pi <- pi^(-2:2)
names(powers.of.pi) <- -2:2
mymat <- matrix(1:30, 3, 10)
myarr <- mymat
dim(myarr) <- c(3, 5, 2)
dimnames(myarr) <- list(letters[1:3], NULL, c("(i)", "(ii)"))
# 3.1 Language layout
1 - pi + exp(1.7)
a <- 6
b <- a <- 6
(z <- 1 - pi + exp(1.7))
search()
objects()
objects(2)
find("objects")
get("[<-.data.frame", pos = 2)
# hills <- hills # only needed in S-PLUS
hills$ispeed <- hills$time/hills$dist
# 3.2 More on S objects
length(letters)
Empl <- list(employee = "Anna", spouse = "Fred", children = 3,
child.ages = c(4, 7, 9))
Empl$employee
Empl$child.ages[2]
x <- "spouse"; Empl[[x]]
unlist(Empl)
unlist(Empl, use.names = F)
attributes(myarr)
attr(myarr, "dim")
Empl <- c(Empl, service = 8)
c(list(x = 1:3, a = 3:6), list(y = 8:23, b = c(3, 8, 39)))
as(powers.of.pi, "vector")
as(powers.of.pi, "numeric")
is(powers.of.pi, "numeric")
as(powers.of.pi, "character")
is(powers.of.pi, "vector")
as(powers.of.pi, "integer")
is(mymat, "array")
# 3.3 Arithmetical expressions
x <- c(10.4, 5.6, 3.1, 6.4, 21.7)
y <- c(x, x)
v <- 2 * x + y + 1
s3 <- seq(-5, 5, by = 0.2)
s4 <- seq(length = 51, from = -5, by = 0.2)
s5 <- rep(x, times = 5) # repeat whole vector
s5 <- rep(x, each = 5) # repeat element-by-element
x <- 1:4 # puts c(1,2,3,4) into x
i <- rep(2, 4) # puts c(2,2,2,2) into i
y <- rep(x, 2) # puts c(1,2,3,4,1,2,3,4) into y
z <- rep(x, i) # puts c(1,1,2,2,3,3,4,4) into z
w <- rep(x, x) # puts c(1,2,2,3,3,3,4,4,4,4) into w
( colc <- rep(1:3, each = 8) )
( rowc <- rep(rep(1:4, each = 2), 3) )
1 + (ceiling(1:24/8) - 1) %% 3 -> colc; colc
1 + (ceiling(1:24/2) - 1) %% 4 -> rowc; rowc
# or
gl(3, 8)
gl(4, 2, 24)
# 3.4 Character vector operations
paste(c("X", "Y"), 1:4)
paste(c("X", "Y"), 1:4, sep = "")
paste(c("X", "Y"), 1:4, sep = "", collapse = " + ")
substring(state.name[44:50], 1, 4)
as.vector(abbreviate(state.name[44:50]))
as.vector(abbreviate(state.name[44:50], use.classes = F))
grep("na$", state.name)
regexpr("na$", state.name)
state.name[regexpr("na$", state.name)> 0]
# 3.5 Formatting and printing
d <- date()
cat("Today's date is:", substring(d, 1, 10),
substring(d, 25, 28), "\n")
cat(1, 2, 3, 4, 5, 6, fill = 8, labels = letters)
cat(powers.of.pi, "\n")
format(powers.of.pi)
cat(format(powers.of.pi), "\n", sep=" ")
# 3.6 Calling conventions for functions
args(hist.default)
# 3.8 Control stuctures
yp <- rpois(50, lambda = 1) # full Poisson sample of size 50
table(yp)
y <- yp[yp > 0] # truncate the zeros; n = 29
ybar <- mean(y); ybar
lam <- ybar
it <- 0 # iteration count
del <- 1 # iterative adjustment
while (abs(del) > 0.0001 && (it <- it + 1) < 10) {
del <- (lam - ybar*(1 - exp(-lam)))/(1 - ybar*exp(-lam))
lam <- lam - del
cat(it, lam, "\n")}
# 3.9 Array and matrix operations
p <- dbinom(0:4, size = 4, prob = 1/3) # an example
CC <- -(p %o% p)
diag(CC) <- p + diag(CC)
structure(3^8 * CC, dimnames = list(0:4, 0:4)) # convenience
apply(iris3, c(2, 3), mean)
apply(iris3, c(2, 3), mean, trim = 0.1)
apply(iris3, 2, mean)
ir.var <- apply(iris3, 3, var)
ir.var <- array(ir.var, dim = dim(iris3)[c(2, 2, 3)],
dimnames = dimnames(iris3)[c(2, 2, 3)])
matrix(rep(1/50, 50) %*% matrix(iris3, nrow = 50), nrow = 4,
dimnames = dimnames(iris3)[-1])
ir.means <- colMeans(iris3)
sweep(iris3, c(2, 3), ir.means)
log(sweep(iris3, c(2, 3), ir.means, "/"))
# 3.10 Introduction to classes and methods
methods(summary)
# End of ch03
|