File: vectors.h

package info (click to toggle)
vrwave 0.9-4
  • links: PTS
  • area: non-free
  • in suites: slink
  • size: 5,032 kB
  • ctags: 7,153
  • sloc: java: 15,050; ansic: 8,219; sh: 458; makefile: 181
file content (130 lines) | stat: -rw-r--r-- 3,659 bytes parent folder | download | duplicates (9)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
#if 0
//<copyright>
//
// Copyright (c) 1992,93,94,95,96,97
// Institute for Information Processing and Computer Supported New Media (IICM),
// Graz University of Technology, Austria.
//
// This file is part of VRweb.
//
// VRweb is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2, or (at your option)
// any later version.
//
// VRweb is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with VRweb; see the file LICENCE. If not, write to the
// Free Software Foundation, Inc., 59 Temple Place - Suite 330,
// Boston, MA 02111-1307, USA.
//
//</copyright>
#endif

/*
 * File:     vectors.h
 *
 * Author:   Michael Hofer (until May 92) and Michael Pichler
 *
 * Created:  12 Mar 92
 *
 * Changed:  21 Feb 97  Michael Pichler
 *
 * $Id: vectors.h,v 1.3 1997/03/06 13:21:37 mpichler Exp $
 *
 */


#ifndef ge3d_vectors_h
#define ge3d_vectors_h


typedef struct
{ float x, y;
} point2D, vector2D;


typedef struct
{ float x, y, z;
} vector3D, point3D;


typedef float matrix4D [4][4];

/* this was defined as "matrix" in earlier versions,
 * but has been changed to "matrix4D" to avoid conflicts
 * with other libraries using the type "matrix"
 */


/* macros for 3D-vector operations */
/* comments in pseudo language */


/* initialisation/assignment.  p := (X, Y, Z)  */
#define init3D(p, X, Y, Z) \
  (p).x = (X),  (p).y = (Y),  (p).z = (Z)

/* initialisation/assignment.  p := (X, Y)  */
#define init2D(p, X, Y) \
  (p).x = (X),  (p).y = (Y)

/* addition.  a + b -> c  */
#define add3D(a, b, c)  (c).x = (a).x + (b).x, \
                        (c).y = (a).y + (b).y, \
                        (c).z = (a).z + (b).z

/* subtraction.  a - b -> c  */
#define sub3D(a,b,c)    (c).x = (a).x - (b).x, \
                        (c).y = (a).y - (b).y, \
                        (c).z = (a).z - (b).z

/* negation.  a = - a */
#define neg3D(a)     (a).x = - (a).x, \
                     (a).y = - (a).y, \
                     (a).z = - (a).z

/* increment.  a += b  */
#define inc3D(a, b) \
  (a).x += (b).x,  (a).y += (b).y,  (a).z += (b).z

/* decrement.  a -= b  */
#define dec3D(a, b) \
  (a).x -= (b).x,  (a).y -= (b).y,  (a).z -= (b).z

/* scale.  a *= s  */
#define scl3D(a, s)  (a).x *= (s), \
                     (a).y *= (s), \
                     (a).z *= (s)   

/* dotproduct.  return <a.b>  */
#define dot3D(a, b)     ((a).x * (b).x + (a).y * (b).y + (a).z * (b).z)
#define dot2D(a, b)     ((a).x * (b).x + (a).y * (b).y)

/* norm.  return |a| */
#define norm3D(a)       sqrt (dot3D (a, a))
#define norm2D(a)       sqrt (dot2D (a, a))

/* crossproduct.  a X b -> c  */
/* important: make sure that c is not identical to a or b! */
#define crp3D(a, b, c)  (c).x = (a).y * (b).z  -  (a).z * (b).y, \
                        (c).y = (a).z * (b).x  -  (a).x * (b).z, \
                        (c).z = (a).x * (b).y  -  (a).y * (b).x

/* parametric line equation.  a + t*b -> c  */
#define pol3D(a, t, b, c)  (c).x = (a).x + (t) * (b).x, \
                           (c).y = (a).y + (t) * (b).y, \
                           (c).z = (a).z + (t) * (b).z

/* linear combination (interpolation).  s*a + t*b -> c  */
#define lcm3D(s, a, t, b, c)  \
  (c).x = (s) * (a).x + (t) * (b).x, \
  (c).y = (s) * (a).y + (t) * (b).y, \
  (c).z = (s) * (a).z + (t) * (b).z


#endif