File: ca_correct.cc

package info (click to toggle)
vspline 1.1.7-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,708 kB
  • sloc: cpp: 15,905; ansic: 443; sh: 17; makefile: 2
file content (523 lines) | stat: -rw-r--r-- 20,218 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
/************************************************************************/
/*                                                                      */
/*    vspline - a set of generic tools for creation and evaluation      */
/*              of uniform b-splines                                    */
/*                                                                      */
/*            Copyright 2017 - 2023 by Kay F. Jahnke                     */
/*                                                                      */
/*    Permission is hereby granted, free of charge, to any person       */
/*    obtaining a copy of this software and associated documentation    */
/*    files (the "Software"), to deal in the Software without           */
/*    restriction, including without limitation the rights to use,      */
/*    copy, modify, merge, publish, distribute, sublicense, and/or      */
/*    sell copies of the Software, and to permit persons to whom the    */
/*    Software is furnished to do so, subject to the following          */
/*    conditions:                                                       */
/*                                                                      */
/*    The above copyright notice and this permission notice shall be    */
/*    included in all copies or substantial portions of the             */
/*    Software.                                                         */
/*                                                                      */
/*    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND    */
/*    EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES   */
/*    OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND          */
/*    NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT       */
/*    HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,      */
/*    WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING      */
/*    FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR     */
/*    OTHER DEALINGS IN THE SOFTWARE.                                   */
/*                                                                      */
/************************************************************************/

/// ca_correct.cc
///
/// Perform correction of chromatic aberration using a cubic polynomial
/// This uses panotools-compatible parameters. Currently only processes
/// 8bit RGB, processing is done on the sRGB data without conversion
/// to linear and back, images with alpha channel won't compute.
/// To see how the panotools lens correction model functions,
/// please refer to https://wiki.panotools.org/Lens_correction_model
///
/// compile with:
/// clang++ -std=c++11 -march=native -o ca_correct -O3 -pthread -DUSE_VC ca_correct.cc -lvigraimpex -lVc
///
/// you can also use g++ instead of clang++. If you don't have Vc on
/// your system, omit '-DUSE_VC' and '-lVc'. To use highway instead of
/// Vc, use -DUSE_HWY and -lhwy, and to use std::simd, use -DUSE_STSIMD,
/// and compile with c++17 standard. Newer versions of gcc provide a std::simd
/// implementation, if that is missing you need to install it separately.
///
/// invoke with ca_correct <image> ar br cr dr ag bg cg dg ab bb cb db d e
/// where 'ar' stands for 'parameter a for red channel' etc., and the
/// trailing d and e are center shift in x and y direction in pixels.
///
/// The purpose here is more to demonstrate how to implement the maths
/// using vspline, but the program could easily be fleshed out to
/// become really usable:
///
/// - add alpha channel treatment
/// - add processing of 16bit data
/// - add colour space management and internal linear processing

// TODO: handle incoming alpha channel
// TODO: differentiate between 8/16 bit
// TODO: operate in linear RGB
// TODO: may produce transparent output where coordinate is out-of-range
// TODO might allow to parametrize normalization (currently using PT's way)
// TODO: while emulating the panotools way of ca correction is nice
// to have, try implementing shift-curve based correction: with
// pixel's radial distance r to origin (normalized to [0,1])
// access a 1D b-spline over M data points, so that
// res = ev ( r * ( M - 1 ) )
// and picking up from source at res instead of r.
// the coefficients of the shift curve can be generated by sampling the
// 'normal' method or any other model, it's methodically neutral, within
// the fidelity of the spline to the approximated signal, which can be
// taken arbitrarily high.
// TODO: consider two more shift curves Cx and Cy defined over [-1,1]
// then, if the incoming coordinate is(x,y), let
// x' = Cx ( x ) and y' = Cy ( y ). This would introduce a tensor-
// based component, usable for sensor tilt compensation (check!)

#include <iostream>

// <vspline/vspline.h> pulls in all of vspline's functionality

#include <vspline/vspline.h>

// in addition to <vigra/tinyvector.hxx> and <vigra/multi_array.hxx>,
// which are necessarily included by vspline, we want to use vigra's
// import/export facilities to load and store images:

#include <vigra/stdimage.hxx>
#include <vigra/imageinfo.hxx>
#include <vigra/impex.hxx>

// we'll be working with float data, so we set up a program-wide
// constant for the vector width appropriate for float data

const int VSIZE = vspline::vector_traits < float > :: size ;

// we silently assume we have a colour image

typedef vigra::RGBValue<float,0,1,2> pixel_type; 

// coordinate_type is a 2D coordinate

typedef vigra::TinyVector < float , 2 > coordinate_type ;

// type of b-spline object used as interpolator

typedef vspline::bspline < pixel_type , 2 > spline_type ;

// target_type is a 2D array of pixels 

typedef vigra::MultiArray < 2 , pixel_type > target_type ;

// type of b-spline evaluator producing single floats

typedef vspline::evaluator < coordinate_type , // incoming coordinate's type
                             float             // processing single channel data
                           > ev_type ;

// gate type to force singular coordinates to a range
// we are using mirror boundary conditions. Note that this may
// produce artifacts in the margins.
                           
typedef vspline::mirror_gate < float > gate_type ;

// mapper uses two gates, for x and y component

typedef vspline::map_functor < coordinate_type , VSIZE ,
                               gate_type , gate_type > mapper_type ;

// we start out by coding the functor implementing
// the coordinate transformation for a single channel.
// we inherit from vspline::unary_functor so that our coordinate
// transformation fits well into vspline's functional processing scheme

struct ev_radial_correction
: public vspline::unary_functor < float , float >
{
  // incoming coordinates are shifted by dx and dy. These values are expected
  // in image coordinates. The shift values should be so that a pixel which
  // is located at the intersection of the sensor with the optical axis comes
  // out as (0,0). If the optical system is perfectly centered, dx and dy will
  // be the coordinates of the image center, so if the image is size X * Y,
  // dx = ( X - 1 ) / 2
  // dy = ( Y - 1 ) / 2
  
  const float dx , dy ;
  
  // next we have a scaling factor. Once the coordinates are shifted to
  // coordinates relative to the optical axis, we apply a scaling factor
  // which 'normalizes' the pixel's distance from the optical axis.
  // A typical scaling factor would be the distance of the image center
  // from the top left corner at (-0.5,-0.5). With dx and dy as above
  // dxc = dx - -0.5 ;
  // dyc = dy - -0.5 ;
  // scale = 1 / sqrt ( dx * dx + dy * dy ) ;
  // Here we use a different choice to be compatible with panotools:
  // we use the vertical distance from image center to top/bottom
  // margin.
  // Since we'll be using a polynomial over the radial distance, picking
  // scale values larger or smaller than this 'typical' value can be used
  // to affect the precise effect of the radial function.
  // rscale is simply the reciprocal value for faster computation.
  
  const float scale ;
  const float rscale ;
  
  // After applying the scale, we have a normalized coordinate. The functor will
  // use this normalized coordinate to calculate the normalized distance from
  // the optical axis. The resulting distance is the argument to the radial
  // correction function. For the radial correction function, we use a cubic
  // polynomial, which needs four coefficients:
  
  const float a , b , c , d ;
  
  // finally we have the PT d and e values, which we label x_shift and y_shift
  // to avoid confusion with the fourth coefficient of the polynomial.
  
  const float x_shift , y_shift ;
  
  // we use two static functions to concisely initialize some of the
  // constant values above
  
  static double d_from_extent ( double d )
  {
    return ( d - 1.0 ) / 2.0 ;
  }
  
  static double rscale_from_wh ( double w , double h )
  {
    double dx = d_from_extent ( w ) ;
    double dy = d_from_extent ( h ) ;
    // I'd normalize to the corner, but to be compatible with panotools,
    // I use normalization to top margin center instead.
    //     return sqrt ( dx * dx + dy * dy ) ;
    return sqrt ( dy * dy ) ;
  }
  
  // here's the constructor for the radial correction functor, taking all
  // the values passed from main() and initializing the constants

  ev_radial_correction ( const double & _width ,
                         const double & _height ,
                         const double & _x_shift ,
                         const double & _y_shift ,
                         const double & _a ,
                         const double & _b ,
                         const double & _c ,
                         const double & _d )
  : dx ( d_from_extent ( _width ) ) ,
    dy ( d_from_extent ( _height ) ) ,
    x_shift ( _x_shift ) ,
    y_shift ( _y_shift ) ,
    rscale ( rscale_from_wh ( _width , _height ) ) ,
    scale ( 1.0 / rscale_from_wh ( _width , _height ) ) ,
    a ( _a ) ,
    b ( _b ) ,
    c ( _c ) ,
    d ( _d )
  {
    // we echo the internal state
    std::cout << "dx:     " << dx << std::endl ;
    std::cout << "dy:     " << dy << std::endl ;
    std::cout << "scale:  " << scale << std::endl ;
    std::cout << "rscale: " << rscale << std::endl ;
    std::cout << "a:      " << a << std::endl ;
    std::cout << "b:      " << b << std::endl ;
    std::cout << "c:      " << c << std::endl ;
    std::cout << "d:      " << d << std::endl ;
  } ;
 
  // now we provide evaluation code for the functor.
  // since the code is the same for vectorized and unvectorized
  // operation, we can write a template, In words:
  // eval is a function template with the coordinate type as it's
  // template argument. eval receives it's argument as a const
  // reference to a coordinate and deposits it's result to a reference
  // to a coordinate. This function will not change the state of the
  // functor (hence the const) - the functor does not have mutable state
  // anyway. Note how CRD can be a single coordinate_type, or it's
  // vectorized equivalent.
  
  template < class CRD >
  void eval ( const CRD & in ,
                    CRD & result ) const
  {
    // set up coordinate-type variable to work on, copy input to it.
    
    CRD cc ( in ) ;
    
    // shift and scale
    // TODO: is it right to add the shift here, or should I subtract

    cc[0] -= ( dx + x_shift ) ;
    cc[0] *= scale ;
    cc[1] -= ( dy + y_shift ) ;
    cc[1] *= scale ;
    
    // calculate distance from center (this is normalized due to scaled cc)
  
    auto r = sqrt ( cc[0] * cc[0] + cc[1] * cc[1] ) ;
    
    // apply polynomial to obtain the scaling factor.

    auto rr = a * r * r * r + b * r * r + c * r + d ;
    
    // use rr to scale cc - this is the radial correction

    cc[0] *= rr ;
    cc[1] *= rr ;
    
    // apply rscale to revert to centered image coordinates

    cc[0] *= rscale ;
    cc[1] *= rscale ;
    
    // reverse initial shift to arrive at UL-based image coordinates

    cc[0] += ( dx + x_shift ) ;
    cc[1] += ( dy + y_shift ) ;
    
    // assign to result

    result = cc ;
  }  
} ;

// next we set up the functor processing all three channels. This functor
// receives three ev_radial_correction functors and three channel views:

struct ev_ca_correct
: public vspline::unary_functor < coordinate_type , pixel_type >
{
  // these three functors hold the radial corrections for the three
  // colour channels

  ev_radial_correction rc_red ;
  ev_radial_correction rc_green ;
  ev_radial_correction rc_blue ;
  
  // these three functors hold interpolators for the colour channels
  
  ev_type ev_red ;
  ev_type ev_green ;
  ev_type ev_blue ;
  
  // and this object deals with out-of-bounds coordinates
  
  mapper_type m ;
  
  // the constructor receives all the functors we'll use. Note how we
  // can simply copy-construct the functors.
  
  ev_ca_correct ( const ev_radial_correction & _rc_red ,
                  const ev_radial_correction & _rc_green ,
                  const ev_radial_correction & _rc_blue ,
                  const ev_type & _ev_red ,
                  const ev_type & _ev_green ,
                  const ev_type & _ev_blue ,
                  const mapper_type & _m )
  : rc_red ( _rc_red ) ,
    rc_green ( _rc_green ) ,
    rc_blue ( _rc_blue ) ,
    ev_red ( _ev_red ) ,
    ev_green ( _ev_green ) ,
    ev_blue ( _ev_blue ) ,
    m ( _m )
    { } ;
    
  // the eval routine is simple, it simply applies the coordinate
  // transformation, applies the mapper to force the transformed
  // coordinate into the range, an then picks the interpolated value
  // using the interpolator for the channel. This is done for all
  // channels in turn.

  // since the code is the same for vectorized and unvectorized
  // operation, we can again write a template:
  
  template < class IN , class OUT >
  void eval ( const IN & c ,
                    OUT & result ) const
  {
    // work variable containing a (possibly vectorized) 2D coordinate

    IN cc ;
    
    // apply the radial correction to the incoming coordinate in c,
    // storing result to cc. Note that c contains the 'target' coordinate:
    // The coordinate of the pixel in the target which we want to compute
    
    rc_red.eval   ( c , cc ) ;
    
    // force coordinate into the defined range (here we use mirroring)
    
    m.eval ( cc , cc ) ;
    
    // evaluate channel view at corrected coordinate, storing result
    // to the red channel of 'result'
    
    ev_red.eval   ( cc , result[0] ) ;
    
    // ditto, for the remaining channels

    rc_green.eval ( c , cc ) ;     
    m.eval ( cc , cc ) ;
    ev_green.eval ( cc , result[1] ) ;

    rc_blue.eval  ( c , cc ) ;     
    m.eval ( cc , cc ) ;
    ev_blue.eval  ( cc , result[2] ) ;
  }
    
} ;

int main ( int argc , char * argv[] )
{
  if ( argc < 11 )
  {
    std::cerr << "pass a colour image file as first argument" << std::endl ;
    std::cerr << "followed by a, b, c for red, green, blue" << std::endl ;
    std::cerr << "and the horizontal and vertical shift" << std::endl ;
    std::cerr << "like ca_correct xx.jpg 0.0001411 -0.0005236 0.0008456 1.0002093 0 0 0 1 0.0002334 -0.0007607 0.0011446 0.9996757 176 116"
              << std::endl ;
    exit( -1 ) ;
  }

  double ar = atof ( argv[2] ) ;
  double br = atof ( argv[3] ) ;
  double cr = atof ( argv[4] ) ;
  double dr = atof ( argv[5] ) ;
  double ag = atof ( argv[6] ) ;
  double bg = atof ( argv[7] ) ;
  double cg = atof ( argv[8] ) ;
  double dg = atof ( argv[9] ) ;
  double ab = atof ( argv[10] ) ;
  double bb = atof ( argv[11] ) ;
  double cb = atof ( argv[12] ) ;
  double db = atof ( argv[13] ) ;
  double x_shift = atof ( argv[14] ) ; // aka panotools 'd'
  double y_shift = atof ( argv[15] ) ; // aka panotools 'e'
  
  // get the image file name
  
  vigra::ImageImportInfo imageInfo ( argv[1] ) ;

  // we want a b-spline with natural boundary conditions
  
  vigra::TinyVector < vspline::bc_code , 2 > bcv ( vspline::NATURAL ) ;
  
  // create cubic 2D b-spline object containing the image data
  // TODO allow passing in arbitrary spline order
  
  spline_type bspl ( imageInfo.shape() , // the shape of the data for the spline
                     5 ,                 // degree 5 == quintic spline
                     bcv                 // specifies natural BCs along both axes
                   ) ;
  
  // load the image data into the b-spline's core. This is a common idiom:
  // the spline's 'core' is a MultiArrayView to that part of the spline's
  // data container which precisely corresponds with the input data.
  // This saves loading the image to some memory first and then transferring
  // the data into the spline. Since the core is a vigra::MultiarrayView,
  // we can pass it to importImage as the desired target for loading the
  // image from disk.
  
  std::cout << "reading image " << argv[1] << " from disk" << std::endl ;
  
  vigra::importImage ( imageInfo , bspl.core ) ;
  
  // prefilter the b-spline

  std::cout << "setting up b-spline interpolator for image data" << std::endl ;
  
  bspl.prefilter() ;
  
  // this is where the result should go:
  
  target_type target ( imageInfo.shape() ) ;
  
  // process the image metrics

  float width = imageInfo.width() ;
  float height = imageInfo.height() ;

  // set up the radial transformation functors
  
  std::cout << "setting up radial correction for red channel:" << std::endl ;
  
  ev_radial_correction ca_red
    ( width , height , x_shift , y_shift , ar , br , cr , dr ) ;

  std::cout << "setting up radial correction for green channel:" << std::endl ;
  
  ev_radial_correction ca_green
    ( width , height , x_shift , y_shift , ag , bg , cg , dg ) ;
    
  std::cout << "setting up radial correction for blue channel:" << std::endl ;
  
  ev_radial_correction ca_blue
    ( width , height , x_shift , y_shift , ab , bb , cb , db ) ;
  
  // here we create the channel views.

  auto red_channel = bspl.get_channel_view ( 0 ) ;
  auto green_channel = bspl.get_channel_view ( 1 ) ;
  auto blue_channel = bspl.get_channel_view ( 2 ) ;
  
  // and set up the per-channel interpolators

  ev_type red_ev ( red_channel ) ;
  ev_type green_ev ( green_channel ) ;
  ev_type blue_ev ( blue_channel ) ;
  
  // next we set up coordinate mapping to the defined range
  
  gate_type g_x ( 0.0 , width - 1.0 ) ;
  gate_type g_y ( 0.0 , height - 1.0 ) ;
  mapper_type m ( g_x , g_y ) ;

  // using vspline's factory functions to create the 'gates' and the
  // 'mapper' applying them, we could instead create m like this:
  // (Note how we have to be explicit about using 'float'
  // for the arguments to the gates - using double arguments would not
  // work here unless we'd also specify the vector width.)
  
//   auto m = vspline::mapper < coordinate_type >
//                ( vspline::mirror ( 0.0f , width - 1.0f ) ,
//                  vspline::mirror ( 0.0f , height - 1.0f ) ) ;                 

  // finally, we create the top-level functor, passing in the three
  // radial correction functors, the channel-wise evaluators and the
  // mapper object

  ev_ca_correct correct ( ca_red , ca_green , ca_blue ,
                          red_ev , green_ev , blue_ev ,
                          m ) ;

  // now we obtain the result by performing a vspline::transform. this transform
  // successively passes discrete coordinates into the target to the functor
  // it's invoked with, storing the result of the functor's evaluation
  // at the self-same coordinates in it's target, so for each coordinate
  // (X,Y), target[(X,Y)] = correct(X,Y)
  
  std::cout << "rendering the target image" << std::endl ;
  
  vspline::transform ( correct , target ) ;

  // store the result with vigra impex

  std::cout << "storing the target image as 'ca_correct.tif'" << std::endl ;
  
  vigra::ImageExportInfo eximageInfo ( "ca_correct.tif" );
  
  vigra::exportImage ( target ,
                       eximageInfo
                       .setPixelType("UINT8")
                       .setForcedRangeMapping ( 0 , 255 , 0 , 255 ) ) ;
  
  std::cout << "done" << std::endl ;
}