1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
|
/************************************************************************/
/* */
/* vspline - a set of generic tools for creation and evaluation */
/* of uniform b-splines */
/* */
/* Copyright 2017 - 2023 by Kay F. Jahnke */
/* */
/* Permission is hereby granted, free of charge, to any person */
/* obtaining a copy of this software and associated documentation */
/* files (the "Software"), to deal in the Software without */
/* restriction, including without limitation the rights to use, */
/* copy, modify, merge, publish, distribute, sublicense, and/or */
/* sell copies of the Software, and to permit persons to whom the */
/* Software is furnished to do so, subject to the following */
/* conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the */
/* Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES */
/* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND */
/* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT */
/* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, */
/* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING */
/* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR */
/* OTHER DEALINGS IN THE SOFTWARE. */
/* */
/************************************************************************/
/// ca_correct.cc
///
/// Perform correction of chromatic aberration using a cubic polynomial
/// This uses panotools-compatible parameters. Currently only processes
/// 8bit RGB, processing is done on the sRGB data without conversion
/// to linear and back, images with alpha channel won't compute.
/// To see how the panotools lens correction model functions,
/// please refer to https://wiki.panotools.org/Lens_correction_model
///
/// compile with:
/// clang++ -std=c++11 -march=native -o ca_correct -O3 -pthread -DUSE_VC ca_correct.cc -lvigraimpex -lVc
///
/// you can also use g++ instead of clang++. If you don't have Vc on
/// your system, omit '-DUSE_VC' and '-lVc'. To use highway instead of
/// Vc, use -DUSE_HWY and -lhwy, and to use std::simd, use -DUSE_STSIMD,
/// and compile with c++17 standard. Newer versions of gcc provide a std::simd
/// implementation, if that is missing you need to install it separately.
///
/// invoke with ca_correct <image> ar br cr dr ag bg cg dg ab bb cb db d e
/// where 'ar' stands for 'parameter a for red channel' etc., and the
/// trailing d and e are center shift in x and y direction in pixels.
///
/// The purpose here is more to demonstrate how to implement the maths
/// using vspline, but the program could easily be fleshed out to
/// become really usable:
///
/// - add alpha channel treatment
/// - add processing of 16bit data
/// - add colour space management and internal linear processing
// TODO: handle incoming alpha channel
// TODO: differentiate between 8/16 bit
// TODO: operate in linear RGB
// TODO: may produce transparent output where coordinate is out-of-range
// TODO might allow to parametrize normalization (currently using PT's way)
// TODO: while emulating the panotools way of ca correction is nice
// to have, try implementing shift-curve based correction: with
// pixel's radial distance r to origin (normalized to [0,1])
// access a 1D b-spline over M data points, so that
// res = ev ( r * ( M - 1 ) )
// and picking up from source at res instead of r.
// the coefficients of the shift curve can be generated by sampling the
// 'normal' method or any other model, it's methodically neutral, within
// the fidelity of the spline to the approximated signal, which can be
// taken arbitrarily high.
// TODO: consider two more shift curves Cx and Cy defined over [-1,1]
// then, if the incoming coordinate is(x,y), let
// x' = Cx ( x ) and y' = Cy ( y ). This would introduce a tensor-
// based component, usable for sensor tilt compensation (check!)
#include <iostream>
// <vspline/vspline.h> pulls in all of vspline's functionality
#include <vspline/vspline.h>
// in addition to <vigra/tinyvector.hxx> and <vigra/multi_array.hxx>,
// which are necessarily included by vspline, we want to use vigra's
// import/export facilities to load and store images:
#include <vigra/stdimage.hxx>
#include <vigra/imageinfo.hxx>
#include <vigra/impex.hxx>
// we'll be working with float data, so we set up a program-wide
// constant for the vector width appropriate for float data
const int VSIZE = vspline::vector_traits < float > :: size ;
// we silently assume we have a colour image
typedef vigra::RGBValue<float,0,1,2> pixel_type;
// coordinate_type is a 2D coordinate
typedef vigra::TinyVector < float , 2 > coordinate_type ;
// type of b-spline object used as interpolator
typedef vspline::bspline < pixel_type , 2 > spline_type ;
// target_type is a 2D array of pixels
typedef vigra::MultiArray < 2 , pixel_type > target_type ;
// type of b-spline evaluator producing single floats
typedef vspline::evaluator < coordinate_type , // incoming coordinate's type
float // processing single channel data
> ev_type ;
// gate type to force singular coordinates to a range
// we are using mirror boundary conditions. Note that this may
// produce artifacts in the margins.
typedef vspline::mirror_gate < float > gate_type ;
// mapper uses two gates, for x and y component
typedef vspline::map_functor < coordinate_type , VSIZE ,
gate_type , gate_type > mapper_type ;
// we start out by coding the functor implementing
// the coordinate transformation for a single channel.
// we inherit from vspline::unary_functor so that our coordinate
// transformation fits well into vspline's functional processing scheme
struct ev_radial_correction
: public vspline::unary_functor < float , float >
{
// incoming coordinates are shifted by dx and dy. These values are expected
// in image coordinates. The shift values should be so that a pixel which
// is located at the intersection of the sensor with the optical axis comes
// out as (0,0). If the optical system is perfectly centered, dx and dy will
// be the coordinates of the image center, so if the image is size X * Y,
// dx = ( X - 1 ) / 2
// dy = ( Y - 1 ) / 2
const float dx , dy ;
// next we have a scaling factor. Once the coordinates are shifted to
// coordinates relative to the optical axis, we apply a scaling factor
// which 'normalizes' the pixel's distance from the optical axis.
// A typical scaling factor would be the distance of the image center
// from the top left corner at (-0.5,-0.5). With dx and dy as above
// dxc = dx - -0.5 ;
// dyc = dy - -0.5 ;
// scale = 1 / sqrt ( dx * dx + dy * dy ) ;
// Here we use a different choice to be compatible with panotools:
// we use the vertical distance from image center to top/bottom
// margin.
// Since we'll be using a polynomial over the radial distance, picking
// scale values larger or smaller than this 'typical' value can be used
// to affect the precise effect of the radial function.
// rscale is simply the reciprocal value for faster computation.
const float scale ;
const float rscale ;
// After applying the scale, we have a normalized coordinate. The functor will
// use this normalized coordinate to calculate the normalized distance from
// the optical axis. The resulting distance is the argument to the radial
// correction function. For the radial correction function, we use a cubic
// polynomial, which needs four coefficients:
const float a , b , c , d ;
// finally we have the PT d and e values, which we label x_shift and y_shift
// to avoid confusion with the fourth coefficient of the polynomial.
const float x_shift , y_shift ;
// we use two static functions to concisely initialize some of the
// constant values above
static double d_from_extent ( double d )
{
return ( d - 1.0 ) / 2.0 ;
}
static double rscale_from_wh ( double w , double h )
{
double dx = d_from_extent ( w ) ;
double dy = d_from_extent ( h ) ;
// I'd normalize to the corner, but to be compatible with panotools,
// I use normalization to top margin center instead.
// return sqrt ( dx * dx + dy * dy ) ;
return sqrt ( dy * dy ) ;
}
// here's the constructor for the radial correction functor, taking all
// the values passed from main() and initializing the constants
ev_radial_correction ( const double & _width ,
const double & _height ,
const double & _x_shift ,
const double & _y_shift ,
const double & _a ,
const double & _b ,
const double & _c ,
const double & _d )
: dx ( d_from_extent ( _width ) ) ,
dy ( d_from_extent ( _height ) ) ,
x_shift ( _x_shift ) ,
y_shift ( _y_shift ) ,
rscale ( rscale_from_wh ( _width , _height ) ) ,
scale ( 1.0 / rscale_from_wh ( _width , _height ) ) ,
a ( _a ) ,
b ( _b ) ,
c ( _c ) ,
d ( _d )
{
// we echo the internal state
std::cout << "dx: " << dx << std::endl ;
std::cout << "dy: " << dy << std::endl ;
std::cout << "scale: " << scale << std::endl ;
std::cout << "rscale: " << rscale << std::endl ;
std::cout << "a: " << a << std::endl ;
std::cout << "b: " << b << std::endl ;
std::cout << "c: " << c << std::endl ;
std::cout << "d: " << d << std::endl ;
} ;
// now we provide evaluation code for the functor.
// since the code is the same for vectorized and unvectorized
// operation, we can write a template, In words:
// eval is a function template with the coordinate type as it's
// template argument. eval receives it's argument as a const
// reference to a coordinate and deposits it's result to a reference
// to a coordinate. This function will not change the state of the
// functor (hence the const) - the functor does not have mutable state
// anyway. Note how CRD can be a single coordinate_type, or it's
// vectorized equivalent.
template < class CRD >
void eval ( const CRD & in ,
CRD & result ) const
{
// set up coordinate-type variable to work on, copy input to it.
CRD cc ( in ) ;
// shift and scale
// TODO: is it right to add the shift here, or should I subtract
cc[0] -= ( dx + x_shift ) ;
cc[0] *= scale ;
cc[1] -= ( dy + y_shift ) ;
cc[1] *= scale ;
// calculate distance from center (this is normalized due to scaled cc)
auto r = sqrt ( cc[0] * cc[0] + cc[1] * cc[1] ) ;
// apply polynomial to obtain the scaling factor.
auto rr = a * r * r * r + b * r * r + c * r + d ;
// use rr to scale cc - this is the radial correction
cc[0] *= rr ;
cc[1] *= rr ;
// apply rscale to revert to centered image coordinates
cc[0] *= rscale ;
cc[1] *= rscale ;
// reverse initial shift to arrive at UL-based image coordinates
cc[0] += ( dx + x_shift ) ;
cc[1] += ( dy + y_shift ) ;
// assign to result
result = cc ;
}
} ;
// next we set up the functor processing all three channels. This functor
// receives three ev_radial_correction functors and three channel views:
struct ev_ca_correct
: public vspline::unary_functor < coordinate_type , pixel_type >
{
// these three functors hold the radial corrections for the three
// colour channels
ev_radial_correction rc_red ;
ev_radial_correction rc_green ;
ev_radial_correction rc_blue ;
// these three functors hold interpolators for the colour channels
ev_type ev_red ;
ev_type ev_green ;
ev_type ev_blue ;
// and this object deals with out-of-bounds coordinates
mapper_type m ;
// the constructor receives all the functors we'll use. Note how we
// can simply copy-construct the functors.
ev_ca_correct ( const ev_radial_correction & _rc_red ,
const ev_radial_correction & _rc_green ,
const ev_radial_correction & _rc_blue ,
const ev_type & _ev_red ,
const ev_type & _ev_green ,
const ev_type & _ev_blue ,
const mapper_type & _m )
: rc_red ( _rc_red ) ,
rc_green ( _rc_green ) ,
rc_blue ( _rc_blue ) ,
ev_red ( _ev_red ) ,
ev_green ( _ev_green ) ,
ev_blue ( _ev_blue ) ,
m ( _m )
{ } ;
// the eval routine is simple, it simply applies the coordinate
// transformation, applies the mapper to force the transformed
// coordinate into the range, an then picks the interpolated value
// using the interpolator for the channel. This is done for all
// channels in turn.
// since the code is the same for vectorized and unvectorized
// operation, we can again write a template:
template < class IN , class OUT >
void eval ( const IN & c ,
OUT & result ) const
{
// work variable containing a (possibly vectorized) 2D coordinate
IN cc ;
// apply the radial correction to the incoming coordinate in c,
// storing result to cc. Note that c contains the 'target' coordinate:
// The coordinate of the pixel in the target which we want to compute
rc_red.eval ( c , cc ) ;
// force coordinate into the defined range (here we use mirroring)
m.eval ( cc , cc ) ;
// evaluate channel view at corrected coordinate, storing result
// to the red channel of 'result'
ev_red.eval ( cc , result[0] ) ;
// ditto, for the remaining channels
rc_green.eval ( c , cc ) ;
m.eval ( cc , cc ) ;
ev_green.eval ( cc , result[1] ) ;
rc_blue.eval ( c , cc ) ;
m.eval ( cc , cc ) ;
ev_blue.eval ( cc , result[2] ) ;
}
} ;
int main ( int argc , char * argv[] )
{
if ( argc < 11 )
{
std::cerr << "pass a colour image file as first argument" << std::endl ;
std::cerr << "followed by a, b, c for red, green, blue" << std::endl ;
std::cerr << "and the horizontal and vertical shift" << std::endl ;
std::cerr << "like ca_correct xx.jpg 0.0001411 -0.0005236 0.0008456 1.0002093 0 0 0 1 0.0002334 -0.0007607 0.0011446 0.9996757 176 116"
<< std::endl ;
exit( -1 ) ;
}
double ar = atof ( argv[2] ) ;
double br = atof ( argv[3] ) ;
double cr = atof ( argv[4] ) ;
double dr = atof ( argv[5] ) ;
double ag = atof ( argv[6] ) ;
double bg = atof ( argv[7] ) ;
double cg = atof ( argv[8] ) ;
double dg = atof ( argv[9] ) ;
double ab = atof ( argv[10] ) ;
double bb = atof ( argv[11] ) ;
double cb = atof ( argv[12] ) ;
double db = atof ( argv[13] ) ;
double x_shift = atof ( argv[14] ) ; // aka panotools 'd'
double y_shift = atof ( argv[15] ) ; // aka panotools 'e'
// get the image file name
vigra::ImageImportInfo imageInfo ( argv[1] ) ;
// we want a b-spline with natural boundary conditions
vigra::TinyVector < vspline::bc_code , 2 > bcv ( vspline::NATURAL ) ;
// create cubic 2D b-spline object containing the image data
// TODO allow passing in arbitrary spline order
spline_type bspl ( imageInfo.shape() , // the shape of the data for the spline
5 , // degree 5 == quintic spline
bcv // specifies natural BCs along both axes
) ;
// load the image data into the b-spline's core. This is a common idiom:
// the spline's 'core' is a MultiArrayView to that part of the spline's
// data container which precisely corresponds with the input data.
// This saves loading the image to some memory first and then transferring
// the data into the spline. Since the core is a vigra::MultiarrayView,
// we can pass it to importImage as the desired target for loading the
// image from disk.
std::cout << "reading image " << argv[1] << " from disk" << std::endl ;
vigra::importImage ( imageInfo , bspl.core ) ;
// prefilter the b-spline
std::cout << "setting up b-spline interpolator for image data" << std::endl ;
bspl.prefilter() ;
// this is where the result should go:
target_type target ( imageInfo.shape() ) ;
// process the image metrics
float width = imageInfo.width() ;
float height = imageInfo.height() ;
// set up the radial transformation functors
std::cout << "setting up radial correction for red channel:" << std::endl ;
ev_radial_correction ca_red
( width , height , x_shift , y_shift , ar , br , cr , dr ) ;
std::cout << "setting up radial correction for green channel:" << std::endl ;
ev_radial_correction ca_green
( width , height , x_shift , y_shift , ag , bg , cg , dg ) ;
std::cout << "setting up radial correction for blue channel:" << std::endl ;
ev_radial_correction ca_blue
( width , height , x_shift , y_shift , ab , bb , cb , db ) ;
// here we create the channel views.
auto red_channel = bspl.get_channel_view ( 0 ) ;
auto green_channel = bspl.get_channel_view ( 1 ) ;
auto blue_channel = bspl.get_channel_view ( 2 ) ;
// and set up the per-channel interpolators
ev_type red_ev ( red_channel ) ;
ev_type green_ev ( green_channel ) ;
ev_type blue_ev ( blue_channel ) ;
// next we set up coordinate mapping to the defined range
gate_type g_x ( 0.0 , width - 1.0 ) ;
gate_type g_y ( 0.0 , height - 1.0 ) ;
mapper_type m ( g_x , g_y ) ;
// using vspline's factory functions to create the 'gates' and the
// 'mapper' applying them, we could instead create m like this:
// (Note how we have to be explicit about using 'float'
// for the arguments to the gates - using double arguments would not
// work here unless we'd also specify the vector width.)
// auto m = vspline::mapper < coordinate_type >
// ( vspline::mirror ( 0.0f , width - 1.0f ) ,
// vspline::mirror ( 0.0f , height - 1.0f ) ) ;
// finally, we create the top-level functor, passing in the three
// radial correction functors, the channel-wise evaluators and the
// mapper object
ev_ca_correct correct ( ca_red , ca_green , ca_blue ,
red_ev , green_ev , blue_ev ,
m ) ;
// now we obtain the result by performing a vspline::transform. this transform
// successively passes discrete coordinates into the target to the functor
// it's invoked with, storing the result of the functor's evaluation
// at the self-same coordinates in it's target, so for each coordinate
// (X,Y), target[(X,Y)] = correct(X,Y)
std::cout << "rendering the target image" << std::endl ;
vspline::transform ( correct , target ) ;
// store the result with vigra impex
std::cout << "storing the target image as 'ca_correct.tif'" << std::endl ;
vigra::ImageExportInfo eximageInfo ( "ca_correct.tif" );
vigra::exportImage ( target ,
eximageInfo
.setPixelType("UINT8")
.setForcedRangeMapping ( 0 , 255 , 0 , 255 ) ) ;
std::cout << "done" << std::endl ;
}
|