File: gradient.cc

package info (click to toggle)
vspline 1.1.7-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,708 kB
  • sloc: cpp: 15,905; ansic: 443; sh: 17; makefile: 2
file content (157 lines) | stat: -rw-r--r-- 6,814 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
/************************************************************************/
/*                                                                      */
/*    vspline - a set of generic tools for creation and evaluation      */
/*              of uniform b-splines                                    */
/*                                                                      */
/*            Copyright 2015 - 2023 by Kay F. Jahnke                    */
/*                                                                      */
/*    Permission is hereby granted, free of charge, to any person       */
/*    obtaining a copy of this software and associated documentation    */
/*    files (the "Software"), to deal in the Software without           */
/*    restriction, including without limitation the rights to use,      */
/*    copy, modify, merge, publish, distribute, sublicense, and/or      */
/*    sell copies of the Software, and to permit persons to whom the    */
/*    Software is furnished to do so, subject to the following          */
/*    conditions:                                                       */
/*                                                                      */
/*    The above copyright notice and this permission notice shall be    */
/*    included in all copies or substantial portions of the             */
/*    Software.                                                         */
/*                                                                      */
/*    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND    */
/*    EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES   */
/*    OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND          */
/*    NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT       */
/*    HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,      */
/*    WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING      */
/*    FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR     */
/*    OTHER DEALINGS IN THE SOFTWARE.                                   */
/*                                                                      */
/************************************************************************/

/// \file gradient.cc
///
/// \brief evaluating a specific spline, derivatives, precision
///
/// If we create a b-spline over an array containing, at each grid point,
/// the sum of the grid point's coordinates, each 1D row, column, etc will
/// hold a linear gradient with first derivative == 1. If we use NATURAL
/// BCs, evaluating the spline with real coordinates anywhere inside the
/// defined range should produce precisely the sum of the coordinates.
/// This is a good test for both the precision of the evaluation and it's
/// correct functioning, particularly with higher-D arrays.
///
/// compile: clang++ -O3 -DUSE_VC -march=native -std=c++11 -pthread
///          -o gradient gradient.cc -lVc
///
/// (with Vc; use -DUSE_HWY and -lhwy for highway, or -std=c++17 and
/// -DUSE_STDSIMD for the std::simd backend)
///
/// or clang++ -O3 -march=native -std=c++11 -pthread -o gradient gradient.cc

#include <random>
#include <iostream>

#include <vspline/vspline.h>

int main ( int argc , char * argv[] )
{
  typedef vspline::bspline < double , 3 > spline_type ;
  typedef typename spline_type::shape_type shape_type ;
  typedef typename spline_type::view_type view_type ;
  typedef typename spline_type::bcv_type bcv_type ;
  
  // let's have a knot point array with nicely odd shape

  shape_type core_shape = { 35 , 43 , 19 } ;
  
  // we have to use a longish call to the constructor since we want to pass
  // 0.0 to 'tolerance' and it's way down in the argument list, so we have to
  // explicitly pass a few arguments which usually take default values before
  // we have a chance to pass the tolerance

  spline_type bspl ( core_shape ,                    // shape of knot point array
                     3 ,                             // cubic b-spline
                     bcv_type ( vspline::NATURAL ) , // natural boundary conditions
                     0.0 ) ;                         // no tolerance

  // get a view to the bspline's core, to fill it with data

  view_type core = bspl.core ;
  
  // create the gradient in each dimension

  for ( int d = 0 ; d < bspl.dimension ; d++ )
  {
    for ( int c = 0 ; c < core_shape[d] ; c++ )
      core.bindAt ( d , c ) += c ;
  }
  
  // now prefilter the spline. This is more to make sure that the prefilter
  // does not do anything wrong - for the given signal, using 'brace()' would
  // be sufficient, because the prefilter on a linear gradient should not have
  // an effect on the coefficients (due to symmetry)

  bspl.prefilter() ;

  // set up the evaluator type

  typedef vigra::TinyVector < double , 3 > coordinate_type ;
  typedef vspline::evaluator < coordinate_type , double > evaluator_type ;
  
  // we also want to verify the derivative along each axis
  
  typedef typename evaluator_type::derivative_spec_type deriv_t ;
  deriv_t dsx , dsy , dsz ;

  dsx[0] = 1 ; // first derivative along axis 0
  dsy[1] = 1 ; // first derivative along axis 1
  dsz[2] = 1 ; // first derivative along axis 2
  
  // set up the evaluator for the underived result
  
  evaluator_type ev ( bspl ) ;
  
  // and evaluators for the three first derivatives
  
  evaluator_type ev_dx ( bspl , dsx ) ;
  evaluator_type ev_dy ( bspl , dsy ) ;
  evaluator_type ev_dz ( bspl , dsz ) ;
  
  // we want to bombard the evaluator with random in-range coordinates
  
  std::random_device rd;
  std::mt19937 gen(rd());
  // std::mt19937 gen(12345);   // fix starting value for reproducibility

  coordinate_type c ;
  
  // here comes our test, feed 100 random 3D coordinates and compare the
  // evaluator's result with the expected value, which is precisely the
  // sum of the coordinate's components. The printout of the derivatives
  // is boring: it's always 1. But this assures us that the b-spline is
  // perfectly plane, even off the grid points. Towards the surface of the
  // volume, the derivative remains at 1.0 because we're using NATURAL
  // boundary conditions.

  for ( int times = 0 ; times < 100 ; times++ )
  {
    for ( int d = 0 ; d < bspl.dimension ; d++ )
      c[d] = ( core_shape[d] - 1 ) * std::generate_canonical<double, 20>(gen) ;
    double result ;
    ev.eval ( c , result ) ;
    double delta = result - sum ( c ) ;

    std::cout << "eval(" << c << ") = " << result
              << " -> delta = " << delta << std::endl ;
    
    ev_dx.eval ( c , result ) ;
    std::cout << "dx: " << result ;
    
    ev_dy.eval ( c , result ) ;
    std::cout << " dy: " << result ;
    
    ev_dz.eval ( c , result ) ;
    std::cout << " dz: " << result << std::endl ;
  }
}