1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
|
/************************************************************************/
/* */
/* vspline - a set of generic tools for creation and evaluation */
/* of uniform b-splines */
/* */
/* Copyright 2017 - 2023 by Kay F. Jahnke */
/* */
/* Permission is hereby granted, free of charge, to any person */
/* obtaining a copy of this software and associated documentation */
/* files (the "Software"), to deal in the Software without */
/* restriction, including without limitation the rights to use, */
/* copy, modify, merge, publish, distribute, sublicense, and/or */
/* sell copies of the Software, and to permit persons to whom the */
/* Software is furnished to do so, subject to the following */
/* conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the */
/* Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES */
/* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND */
/* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT */
/* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, */
/* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING */
/* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR */
/* OTHER DEALINGS IN THE SOFTWARE. */
/* */
/************************************************************************/
/// \file n_shift.cc
///
/// \brief fidelity test
///
/// This is a test to see how much a signal degrades when it is submitted
/// to a sequence of operations:
///
/// - create a b-spline over the signal
/// - evaluate the spline at unit-spaced locations with an arbitrary offset
/// - yielding a shifted signal, for which the process is repeated
///
/// Finally, a last shift is performed which samples the penultimate version
/// of the signal at points coinciding with coordinates 0...N-1 of the
/// original signal. This last iteration should ideally recreate the
/// original sequence.
///
/// The test is done with a periodic signal to avoid margin effects.
/// The initial sequence is created by evaluating a periodic high-degree
/// b-spline of half the size at steps n/2. This way we start out
/// with a signal with low high-frequency content - a signal which can
/// be approximated well with a b-spline. Optionally, the supersampling
/// factor can be passed on the command line to experiment with different
/// values than the default of 2. Supersampling factors should be whole
/// numbers (halves also work, but less precise) - so that the knot
/// points of the original signal coincide with knot points of the
/// supersampled signal. This way, every interval contains a partial
/// polynomial with no discontinuities, and the spline can faithfully
/// represent the signal.
/// Both this program and bls.cpp show that there is a significant
/// threshold involved: if the initial signal contains *no frequencies
/// above half the Nyquist frequency*, a b-spline of sufficiently
/// large degree becomes *immune to resampling*. See also bls.cpp,
/// which produces test signals using IFFT, which is a clearer way
/// of excluding part of the frequency spectrum, because the signal
/// generated by IFT can - by definition - only contain frequencies
/// which have non-zero corresponding coefficients in the FT.
///
/// compile with: clang++ -pthread -O3 -std=c++11 n_shift.cc -o n_shift
///
/// invoke like: n_shift 17 500
#include <iostream>
#include <random>
#include <vigra/accumulator.hxx>
#include <vigra/multi_math.hxx>
#include <vspline/vspline.h>
int main ( int argc , char * argv[] )
{
if ( argc < 3 )
{
std::cerr << "pass the spline's degree, the number of iterations"
<< std::endl
<< "and optionally the supersampling factor"
<< std::endl ;
exit ( -1 ) ;
}
int degree = std::atoi ( argv[1] ) ;
assert ( degree >= 0 && degree <= vspline_constants::max_degree ) ;
int iterations = 1 + std::atoi ( argv[2] ) ;
const int sz = 1024 ;
long double widen = 2.0 ;
if ( argc > 3 )
widen = atof ( argv[3] ) ;
assert ( widen >= 1.0 ) ;
int wsz = sz * widen ;
vigra::MultiArray < 1 , long double > original ( wsz ) ;
vigra::MultiArray < 1 , long double > target ( wsz ) ;
// we start out by filling the first bit of 'original' with random data
// between -1 and 1
std::random_device rd ;
std::mt19937 gen ( rd() ) ;
// gen.seed ( 1 ) ; // if desired, level playing field
std::uniform_real_distribution<> dis ( -1 , 1 ) ;
for ( int x = 0 ; x < sz ; x++ )
original [ x ] = dis ( gen ) ;
// create the bspline object to produce the data we'll work with
vspline::bspline < long double , // the spline's data type
1 > // one dimension only
bsp ( sz , // sz values
20 , // high degree for smoothness
vspline::PERIODIC , // periodic boundary conditions
0.0 ) ; // no tolerance
vigra::MultiArrayView < 1 , long double > initial
( vigra::Shape1(sz) , original.data() ) ;
// pull in the data while prefiltering
bsp.prefilter ( initial ) ;
// create an evaluator to obtain interpolated values
typedef vspline::evaluator < long double , long double > ev_type ;
ev_type ev ( bsp ) ; // from the bspline object we just made
// now we evaluate at 1/widen steps, into target
for ( int x = 0 ; x < wsz ; x++ )
target [ x ] = ev ( (long double) ( x ) / (long double) ( widen ) ) ;
// we take this as our original signal. Since this is a sampling
// of a periodic signal (the spline in bsp) representing a full
// period, we assume that a b-spline over this signal will, within
// the spline's capacity, approximate the signal in 'original'.
// what we want to see is how sampling at offsetted positions
// and recreating a spline over the offsetted signal will degrade
// the signal with different-degree b-splines and different numbers
// of iterations.
original = target ;
// now we set up the working spline
vspline::bspline < long double , // spline's data type
1 > // one dimension
bspw ( wsz , // wsz values
degree , // degree as per command line
vspline::PERIODIC , // periodic boundary conditions
0.0 ) ; // no tolerance
// we pull in the working data we've just generated
bspw.prefilter ( original ) ;
// and set up the evaluator for the test
ev_type evw ( bspw ) ;
// we want to map the incoming coordinates into the defined range.
// Since we're using a periodic spline, the range is from 0...N,
// rather than 0...N-1 for non-periodic splines
auto gate = vspline::periodic ( 0.0L , (long double)(wsz) ) ;
// now we do a bit of functional programming.
// we chain gate and evaluator:
auto periodic_ev = gate + evw ;
// we cumulate the offsets so we can 'undo' the cumulated offset
// in the last iteration
long double cumulated_offset = 0.0 ;
for ( int n = 0 ; n < iterations ; n++ )
{
using namespace vigra::multi_math ;
using namespace vigra::acc;
// use a random, largish offset (+/- 1000). any offset
// will do, since we have a periodic gate, mapping the
// coordinates for evaluation into the spline's range
long double offset = 1000.0 * dis ( gen ) ;
// with the last iteration, we shift back to the original
// 0-based locations. This last shift should recreate the
// original signal as best as a spline of this degree can
// do after so many iterations.
if ( n == iterations - 1 )
offset = - cumulated_offset ;
cumulated_offset += offset ;
if ( n > ( iterations - 10 ) )
std::cout << "iteration " << n << " offset " << offset
<< " cumulated offset " << cumulated_offset << std::endl ;
// we evaluate the spline at unit-stepped offsetted locations,
// so, 0 + offset , 1 + offset ...
// in the last iteration, this should ideally reproduce the original
// signal.
for ( int x = 0 ; x < wsz ; x++ )
{
auto arg = x + offset ;
target [ x ] = periodic_ev ( arg ) ;
}
// now we create a new spline over target, reusing bspw
// note how this merely changes the coefficients of the spline,
// the container for the coefficients is reused, and therefore
// the evaluator (evw) will look at the new set of coefficients.
// So we don't need to create a new evaluator.
bspw.prefilter ( target ) ;
// to convince ourselves that we really are working on a different
// sampling of the signal signal - and to see how close we get to the
// original signal after n iterations, when we use an offset to get
// the sampling locations back to 0, 1, ...
vigra::MultiArray < 1 , long double > error_array
( vigra::multi_math::squaredNorm ( target - original ) ) ;
AccumulatorChain < long double , Select < Mean, Maximum > > ac ;
extractFeatures ( error_array.begin() , error_array.end() , ac ) ;
if ( n > ( iterations - 10 ) )
{
if ( n == iterations - 1 )
std::cout << "final result, evaluating at original unit steps"
<< std::endl ;
std::cout << "signal difference Mean: "
<< sqrt(get<Mean>(ac)) << std::endl;
std::cout << "signal difference Maximum: "
<< sqrt(get<Maximum>(ac)) << std::endl;
}
}
}
|