File: n_shift.cc

package info (click to toggle)
vspline 1.1.7-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,708 kB
  • sloc: cpp: 15,905; ansic: 443; sh: 17; makefile: 2
file content (257 lines) | stat: -rw-r--r-- 10,502 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
/************************************************************************/
/*                                                                      */
/*    vspline - a set of generic tools for creation and evaluation      */
/*              of uniform b-splines                                    */
/*                                                                      */
/*            Copyright 2017 - 2023 by Kay F. Jahnke                    */
/*                                                                      */
/*    Permission is hereby granted, free of charge, to any person       */
/*    obtaining a copy of this software and associated documentation    */
/*    files (the "Software"), to deal in the Software without           */
/*    restriction, including without limitation the rights to use,      */
/*    copy, modify, merge, publish, distribute, sublicense, and/or      */
/*    sell copies of the Software, and to permit persons to whom the    */
/*    Software is furnished to do so, subject to the following          */
/*    conditions:                                                       */
/*                                                                      */
/*    The above copyright notice and this permission notice shall be    */
/*    included in all copies or substantial portions of the             */
/*    Software.                                                         */
/*                                                                      */
/*    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND    */
/*    EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES   */
/*    OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND          */
/*    NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT       */
/*    HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,      */
/*    WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING      */
/*    FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR     */
/*    OTHER DEALINGS IN THE SOFTWARE.                                   */
/*                                                                      */
/************************************************************************/

/// \file n_shift.cc
///
/// \brief fidelity test
/// 
/// This is a test to see how much a signal degrades when it is submitted
/// to a sequence of operations:
///
/// - create a b-spline over the signal
/// - evaluate the spline at unit-spaced locations with an arbitrary offset
/// - yielding a shifted signal, for which the process is repeated
///
/// Finally, a last shift is performed which samples the penultimate version
/// of the signal at points coinciding with coordinates 0...N-1 of the
/// original signal. This last iteration should ideally recreate the
/// original sequence.
///
/// The test is done with a periodic signal to avoid margin effects.
/// The initial sequence is created by evaluating a periodic high-degree
/// b-spline of half the size at steps n/2. This way we start out
/// with a signal with low high-frequency content - a signal which can
/// be approximated well with a b-spline. Optionally, the supersampling
/// factor can be passed on the command line to experiment with different
/// values than the default of 2. Supersampling factors should be whole
/// numbers (halves also work, but less precise) - so that the knot
/// points of the original signal coincide with knot points of the
/// supersampled signal. This way, every interval contains a partial
/// polynomial with no discontinuities, and the spline can faithfully
/// represent the signal.
/// Both this program and bls.cpp show that there is a significant
/// threshold involved: if the initial signal contains *no frequencies
/// above half the Nyquist frequency*, a b-spline of sufficiently
/// large degree becomes *immune to resampling*. See also bls.cpp,
/// which produces test signals using IFFT, which is a clearer way
/// of excluding part of the frequency spectrum, because the signal
/// generated by IFT can - by definition - only contain frequencies
/// which have non-zero corresponding coefficients in the FT.
///
/// compile with: clang++ -pthread -O3 -std=c++11 n_shift.cc -o n_shift
///
/// invoke like: n_shift 17 500

#include <iostream>
#include <random>
#include <vigra/accumulator.hxx>
#include <vigra/multi_math.hxx>
#include <vspline/vspline.h>

int main ( int argc , char * argv[] )
{
  if ( argc < 3 )
  {
    std::cerr << "pass the spline's degree, the number of iterations" 
              << std::endl
              << "and optionally the supersampling factor"
              << std::endl ;
    exit ( -1 ) ;
  }

  int degree = std::atoi ( argv[1] ) ;
  
  assert ( degree >= 0 && degree <= vspline_constants::max_degree ) ;
  
  int iterations = 1 + std::atoi ( argv[2] ) ;
  
  const int sz = 1024 ;
  
  long double widen = 2.0 ;
  
  if ( argc > 3 )
    widen = atof ( argv[3] ) ;
  
  assert ( widen >= 1.0 ) ;
  
  int wsz = sz * widen ;
  
  vigra::MultiArray < 1 , long double > original ( wsz ) ;
  vigra::MultiArray < 1 , long double > target ( wsz ) ;
  
  // we start out by filling the first bit of 'original' with random data
  // between -1 and 1
  
  std::random_device rd ;
  std::mt19937 gen ( rd() ) ;
//   gen.seed ( 1 ) ;              // if desired, level playing field
  std::uniform_real_distribution<> dis ( -1 , 1 ) ;
  for ( int x = 0 ; x < sz ; x++ )
    original [ x ] = dis ( gen ) ;

  // create the bspline object to produce the data we'll work with
  
  vspline::bspline < long double ,   // the spline's data type
                     1 >             // one dimension only
    bsp ( sz ,                  // sz values
          20 ,                  // high degree for smoothness
          vspline::PERIODIC ,   // periodic boundary conditions
          0.0 ) ;               // no tolerance
          
  vigra::MultiArrayView < 1 , long double > initial
    ( vigra::Shape1(sz) , original.data() ) ;
  
  // pull in the data while prefiltering
    
  bsp.prefilter ( initial ) ;
  
  // create an evaluator to obtain interpolated values
  
  typedef vspline::evaluator < long double , long double > ev_type ;
  
  ev_type ev ( bsp ) ; // from the bspline object we just made
  
  // now we evaluate at 1/widen steps, into target
  
  for ( int x = 0 ; x < wsz ; x++ )
    target [ x ] = ev ( (long double) ( x ) / (long double) ( widen ) ) ;
  
  // we take this as our original signal. Since this is a sampling
  // of a periodic signal (the spline in bsp) representing a full
  // period, we assume that a b-spline over this signal will, within
  // the spline's capacity, approximate the signal in 'original'.
  // what we want to see is how sampling at offsetted positions
  // and recreating a spline over the offsetted signal will degrade
  // the signal with different-degree b-splines and different numbers
  // of iterations.

  original = target ;
  
  // now we set up the working spline

  vspline::bspline < long double ,    // spline's data type
                     1 >         // one dimension
    bspw ( wsz ,                 // wsz values
           degree ,              // degree as per command line
           vspline::PERIODIC ,   // periodic boundary conditions
           0.0 ) ;               // no tolerance

  // we pull in the working data we've just generated

  bspw.prefilter ( original ) ;
  
  // and set up the evaluator for the test
  
  ev_type evw ( bspw ) ;
  
  // we want to map the incoming coordinates into the defined range.
  // Since we're using a periodic spline, the range is from 0...N,
  // rather than 0...N-1 for non-periodic splines

  auto gate = vspline::periodic ( 0.0L , (long double)(wsz) ) ;

  // now we do a bit of functional programming.
  // we chain gate and evaluator:

  auto periodic_ev = gate + evw ;
  
  // we cumulate the offsets so we can 'undo' the cumulated offset
  // in the last iteration
    
  long double cumulated_offset = 0.0 ;
  
  for ( int n = 0 ; n < iterations ; n++ )
  {
    using namespace vigra::multi_math ;
    using namespace vigra::acc;
  
    // use a random, largish offset (+/- 1000). any offset
    // will do, since we have a periodic gate, mapping the
    // coordinates for evaluation into the spline's range
    
    long double offset = 1000.0 * dis ( gen ) ;
    
    // with the last iteration, we shift back to the original
    // 0-based locations. This last shift should recreate the
    // original signal as best as a spline of this degree can
    // do after so many iterations.

    if ( n == iterations - 1 )
      offset = - cumulated_offset ;

    cumulated_offset += offset ;

    if ( n > ( iterations - 10 ) )
      std::cout << "iteration " << n << " offset " << offset
                << " cumulated offset " << cumulated_offset << std::endl ;
    
    // we evaluate the spline at unit-stepped offsetted locations,
    // so, 0 + offset , 1 + offset ...
    // in the last iteration, this should ideally reproduce the original
    // signal.
    
    for ( int x = 0 ; x < wsz ; x++ )
    {
      auto arg = x + offset ;
      target [ x ] = periodic_ev ( arg ) ;
    }
    
    // now we create a new spline over target, reusing bspw
    // note how this merely changes the coefficients of the spline,
    // the container for the coefficients is reused, and therefore
    // the evaluator (evw) will look at the new set of coefficients.
    // So we don't need to create a new evaluator.

    bspw.prefilter ( target ) ;
    
    // to convince ourselves that we really are working on a different
    // sampling of the signal signal - and to see how close we get to the
    // original signal after n iterations, when we use an offset to get
    // the sampling locations back to 0, 1, ...
      
    vigra::MultiArray < 1 , long double > error_array
      ( vigra::multi_math::squaredNorm ( target - original ) ) ;

    AccumulatorChain < long double , Select < Mean, Maximum > > ac ;
    extractFeatures ( error_array.begin() , error_array.end() , ac ) ;
    
    if ( n > ( iterations - 10 ) )
    {
      if ( n == iterations - 1 )
        std::cout << "final result, evaluating at original unit steps"
                  << std::endl ;
      std::cout << "signal difference Mean:    "
                << sqrt(get<Mean>(ac)) << std::endl;
      std::cout << "signal difference Maximum: "
                << sqrt(get<Maximum>(ac)) << std::endl;
    }
  }
}