1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
|
/************************************************************************/
/* */
/* vspline - a set of generic tools for creation and evaluation */
/* of uniform b-splines */
/* */
/* Copyright 2015 - 2023 by Kay F. Jahnke */
/* */
/* Permission is hereby granted, free of charge, to any person */
/* obtaining a copy of this software and associated documentation */
/* files (the "Software"), to deal in the Software without */
/* restriction, including without limitation the rights to use, */
/* copy, modify, merge, publish, distribute, sublicense, and/or */
/* sell copies of the Software, and to permit persons to whom the */
/* Software is furnished to do so, subject to the following */
/* conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the */
/* Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES */
/* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND */
/* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT */
/* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, */
/* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING */
/* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR */
/* OTHER DEALINGS IN THE SOFTWARE. */
/* */
/************************************************************************/
/// \file roundtrip.cc
///
/// \brief benchmarking and testing code for various vspline capabilities
///
/// load an image, create a b-spline from it, and restore the original data,
/// both by normal evaluation and by convolution with the reconstruction kernel.
/// all of this is done several times each with different boundary conditions,
/// spline degrees and in float and double arithmetic, the processing times
/// and differences between input and restored signal are printed to cout.
///
/// obviously, this is not a useful program, it's to make sure the engine functions as
/// intended and all combinations of float and double as values and coordinates compile
/// and function as intended, also giving an impression of the speed of processing.
///
/// compile:
/// clang++ -std=c++11 -march=native -o roundtrip -O3 -pthread -DUSE_VC roundtrip.cc -lvigraimpex -lVc
/// or: clang++ -std=c++11 -march=native -o roundtrip -O3 -pthread roundtrip.cc -lvigraimpex
///
/// invoke: roundtrip <image file>
///
/// there is no image output.
#include <iostream>
#include <vspline/vspline.h>
#include <vigra/stdimage.hxx>
#include <vigra/imageinfo.hxx>
#include <vigra/impex.hxx>
#include <vigra/accumulator.hxx>
#include <vigra/multi_math.hxx>
#define PRINT_ELAPSED
#ifdef PRINT_ELAPSED
#include <ctime>
#include <chrono>
#endif
using namespace std ;
using namespace vigra ;
/// check for differences between two arrays
template < class view_type >
long double check_diff ( const view_type& a , const view_type& b )
{
using namespace vigra::multi_math ;
using namespace vigra::acc;
typedef typename view_type::value_type value_type ;
typedef typename vigra::ExpandElementResult < value_type > :: type real_type ;
typedef MultiArray<view_type::actual_dimension,real_type> error_array ;
error_array ea ( vigra::multi_math::squaredNorm ( b - a ) ) ;
AccumulatorChain<real_type,Select< Mean, Maximum> > ac ;
extractFeatures(ea.begin(), ea.end(), ac);
std::cout << "warped image diff Mean: " << sqrt(get<Mean>(ac)) << std::endl;
long double max_error = sqrt(get<Maximum>(ac)) ;
std::cout << "warped image diff Maximum: "
<< max_error << std::endl ;
// if ( max_error > .01 )
// {
// for ( int y = 0 ; y < a.shape(1) ; y++ )
// {
// for ( int x = 0 ; x < a.shape(0) ; x++ )
// {
// auto pa = a ( x , y ) ;
// auto pb = b ( x , y ) ;
// auto na = pa[0] * pa[0] + pa[1] * pa[1] + pa[2] * pa[2] ;
// auto nb = pb[0] * pb[0] + pb[1] * pb[1] + pb[2] * pb[2] ;
// if ( std::abs ( na - nb ) > .01 )
// std::cout << "excess at ( " << x << " , "
// << y << " )" << std::endl ;
// }
// }
// }
return max_error ;
}
template < class view_type ,
typename real_type ,
typename rc_type ,
int specialize >
long double run_test ( view_type & data ,
vspline::bc_code bc ,
int DEGREE ,
int TIMES = 32 )
{
typedef typename view_type::value_type pixel_type ;
typedef typename view_type::difference_type Shape;
typedef MultiArray < 2 , pixel_type > array_type ;
typedef int int_type ;
auto shape = data.shape() ;
long double max_error = 0.0L ;
long double error ;
// we use simdized types with as many elements as vector_traits
// considers appropriate for a given real_type, which is the elementary
// type of the (pixel) data we process:
const int vsize = vspline::vector_traits < real_type > :: size ;
vspline::bcv_type < view_type::actual_dimension > bcv ( bc ) ;
int Nx = data.width() ;
int Ny = data.height() ;
vspline::bspline < pixel_type , 2 > bsp ( data.shape() , DEGREE , bcv ) ;
size_t max_extent = shape[0] > shape[1] ? shape[0] : shape[1] ;
vigra::MultiArray < 1 , rc_type > indexes ( max_extent ) ;
for ( size_t i = 0 ; i < max_extent ; i++ )
indexes[i] = i ;
vigra::MultiArrayView < 1 , rc_type > ix0
( vigra::Shape1 ( shape[0] ) , indexes.data() ) ;
vigra::MultiArrayView < 1 , rc_type > ix1
( vigra::Shape1 ( shape[1] ) , indexes.data() ) ;
vspline::grid_spec < 2 , rc_type > grid { ix0 , ix1 } ;
bsp.core = data ;
// first test: time prefilter
#ifdef PRINT_ELAPSED
std::chrono::system_clock::time_point start = std::chrono::system_clock::now();
std::chrono::system_clock::time_point end ;
#endif
for ( int times = 0 ; times < TIMES ; times++ )
bsp.prefilter() ;
#ifdef PRINT_ELAPSED
end = std::chrono::system_clock::now();
cout << "avg " << TIMES << " x prefilter:............................ "
<< std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count() / float(TIMES)
<< " ms" << endl ;
#endif
// to time and test 1D operation, we pretend the data are 1D,
// prefilter and restore them.
start = std::chrono::system_clock::now();
// cast data to 1D array
vigra::MultiArrayView < 1 , pixel_type > fake_1d_array
( vigra::Shape1 ( prod ( data.shape() ) ) , data.data() ) ;
vigra::TinyVector < vspline::bc_code , 1 > bcv1 ( bcv[0] ) ;
vspline::bspline < pixel_type , 1 > bsp1
( fake_1d_array.shape() , DEGREE , bcv1 ) ;
bsp1.core = fake_1d_array ;
for ( int times = 0 ; times < TIMES ; times++ )
bsp1.prefilter() ;
#ifdef PRINT_ELAPSED
end = std::chrono::system_clock::now();
cout << "avg " << TIMES << " x prefilter as fake 1D array:........... "
<< std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count() / float(TIMES)
<< " ms" << endl ;
#endif
// use fresh data, data above are useless after TIMES times filtering
bsp1.core = fake_1d_array ;
bsp1.prefilter() ;
start = std::chrono::system_clock::now();
vigra::MultiArray < 1 , pixel_type > fake_1d_target
( vigra::Shape1 ( prod ( data.shape() ) ) ) ;
vspline::restore < 1 , pixel_type > ( bsp1 , fake_1d_target ) ;
for ( int times = 1 ; times < TIMES ; times++ )
vspline::restore < 1 , pixel_type > ( bsp1 , fake_1d_target ) ;
#ifdef PRINT_ELAPSED
end = std::chrono::system_clock::now();
cout << "avg " << TIMES << " x restore original data from 1D:........ "
<< std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count() / float(TIMES)
<< " ms" << endl ;
#endif
cout << "difference original data/restored data:" << endl ;
error = check_diff<decltype(fake_1d_array)> ( fake_1d_array , fake_1d_target ) ;
if ( error > max_error )
max_error = error ;
// that's all of the 1D testing we do, back to the 2D data.
// use fresh data, data above are useless after TIMES times filtering
bsp.core = data ;
bsp.prefilter() ;
// get a view to the core coefficients (those which aren't part of the brace)
view_type cfview = bsp.core ;
// set the coordinate type
typedef vigra::TinyVector < rc_type , 2 > coordinate_type ;
// set the evaluator type
typedef vspline::evaluator<coordinate_type,pixel_type,vsize,specialize> eval_type ;
// set the discrete coordinate type
typedef vigra::TinyVector < int , 2 > dsc_coordinate_type ;
// set the discrete evaluator type
// currently unused, but is an alternative for unit-spaced
// index-based transform.
typedef vspline::evaluator<dsc_coordinate_type,pixel_type,vsize,specialize> dsc_eval_type ;
// create the evaluator for the b-spline, using plain evaluation (no derivatives)
eval_type raw_ev ( bsp ) ;
dsc_eval_type dsc_ev ( bsp ) ;
typedef vspline::bspline < pixel_type , 2 > spline_type ;
auto ev = vspline::make_safe_evaluator < spline_type , rc_type > ( bsp ) ;
// type for coordinate array
typedef vigra::MultiArray<2, coordinate_type> coordinate_array ;
int Tx = Nx ;
int Ty = Ny ;
// now we create a warp array of coordinates at which the spline will be evaluated.
// Also create a target array to contain the result.
coordinate_array fwarp ( Shape ( Tx , Ty ) ) ;
array_type _target ( Shape(Tx,Ty) ) ;
view_type target ( _target ) ;
rc_type dfx = 0.0 , dfy = 0.0 ; // currently evaluating right at knot point locations
for ( int times = 0 ; times < 1 ; times++ )
{
for ( int y = 0 ; y < Ty ; y++ )
{
rc_type fy = (rc_type)(y) + dfy ;
for ( int x = 0 ; x < Tx ; x++ )
{
rc_type fx = (rc_type)(x) + dfx ;
// store the coordinate to fwarp[x,y]
fwarp [ Shape ( x , y ) ] = coordinate_type ( fx , fy ) ;
}
}
}
// second test. perform a transform using fwarp as warp array. Since fwarp contains
// the discrete coordinates to the knot points, converted to float, the result
// should be the same as the input within the given precision
#ifdef PRINT_ELAPSED
start = std::chrono::system_clock::now();
#endif
for ( int times = 0 ; times < TIMES ; times++ )
vspline::transform ( ev , fwarp , target ) ;
#ifdef PRINT_ELAPSED
end = std::chrono::system_clock::now();
cout << "avg " << TIMES << " x transform with ready-made bspline:.... "
<< std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count() / float(TIMES)
<< " ms" << endl ;
#endif
error = check_diff<view_type> ( target , data ) ;
if ( error > max_error )
max_error = error ;
// third test: do the same with the 'classic' remap routine which internally creates
// a b-spline
#ifdef PRINT_ELAPSED
start = std::chrono::system_clock::now();
#endif
for ( int times = 0 ; times < TIMES ; times++ )
vspline::remap ( data , fwarp , target , bcv , DEGREE ) ;
#ifdef PRINT_ELAPSED
end = std::chrono::system_clock::now();
cout << "avg " << TIMES << " x classic remap:........................ "
<< std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count() / float(TIMES)
<< " ms" << endl ;
#endif
error = check_diff<view_type> ( target , data ) ;
if ( error > max_error )
max_error = error ;
// fourth test: perform an transform() directly using the b-spline evaluator
// as the transform's functor. This is, yet again, the same, because
// it evaluates at all discrete positions, but now without the warp array:
// the index-based transform feeds the evaluator with the discrete coordinates.
#ifdef PRINT_ELAPSED
start = std::chrono::system_clock::now();
#endif
for ( int times = 0 ; times < TIMES ; times++ )
vspline::transform ( ev , target ) ;
#ifdef PRINT_ELAPSED
end = std::chrono::system_clock::now();
cout << "avg " << TIMES << " x index-based transform................. "
<< std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count() / float(TIMES)
<< " ms" << endl ;
#endif
cout << "difference original data/restored data:" << endl ;
error = check_diff<view_type> ( target , data ) ;
if ( error > max_error )
max_error = error ;
// fifth test: use 'restore' which internally uses convolution. This is
// usually slightly faster than the previous way to restore the original
// data, but otherwise makes no difference.
#ifdef PRINT_ELAPSED
start = std::chrono::system_clock::now();
#endif
for ( int times = 0 ; times < TIMES ; times++ )
vspline::restore < 2 , pixel_type > ( bsp , target ) ;
#ifdef PRINT_ELAPSED
end = std::chrono::system_clock::now();
cout << "avg " << TIMES << " x restore original data: .............. "
<< std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count() / float(TIMES)
<< " ms" << endl ;
#endif
cout << "difference original data/restored data:" << endl ;
error = check_diff<view_type> ( data , target ) ;
if ( error > max_error )
max_error = error ;
cout << endl ;
#ifdef PRINT_ELAPSED
start = std::chrono::system_clock::now();
#endif
for ( int times = 0 ; times < TIMES ; times++ )
vspline::transform ( grid , raw_ev , target ) ;
#ifdef PRINT_ELAPSED
end = std::chrono::system_clock::now();
cout << "avg " << TIMES << " x grid eval over canonical indexes: ... "
<< std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count() / float(TIMES)
<< " ms" << endl ;
#endif
cout << "difference original data/restored data:" << endl ;
error = check_diff<view_type> ( data , target ) ;
if ( error > max_error )
max_error = error ;
cout << endl ;
#ifdef PRINT_ELAPSED
start = std::chrono::system_clock::now();
#endif
for ( int times = 0 ; times < TIMES ; times++ )
vspline::transform ( grid , ev , target ) ;
#ifdef PRINT_ELAPSED
end = std::chrono::system_clock::now();
cout << "avg " << TIMES << " x gen. grid eval over canonical indexes: "
<< std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count() / float(TIMES)
<< " ms" << endl ;
#endif
cout << "difference original data/restored data:" << endl ;
error = check_diff<view_type> ( data , target ) ;
if ( error > max_error )
max_error = error ;
cout << endl ;
return max_error ;
}
template < class real_type , class rc_type >
long double process_image ( char * name )
{
long double max_error = 0.0L ;
long double error ;
cout << fixed << showpoint << setprecision(16) ;
// the import and info-displaying code is taken from vigra:
vigra::ImageImportInfo imageInfo(name);
// print some information
std::cout << "Image information:\n";
std::cout << " file format: " << imageInfo.getFileType() << std::endl;
std::cout << " width: " << imageInfo.width() << std::endl;
std::cout << " height: " << imageInfo.height() << std::endl;
std::cout << " pixel type: " << imageInfo.getPixelType() << std::endl;
std::cout << " color image: ";
if (imageInfo.isColor()) std::cout << "yes (";
else std::cout << "no (";
std::cout << "number of channels: " << imageInfo.numBands() << ")\n";
typedef vigra::RGBValue<real_type,0,1,2> pixel_type;
typedef vigra::MultiArray<2, pixel_type> array_type ;
typedef vigra::MultiArrayView<2, pixel_type> view_type ;
// to test that strided data are processed correctly, we load the image
// to an inner subarray of containArray
// array_type containArray(imageInfo.shape()+vigra::Shape2(3,5));
// view_type imageArray = containArray.subarray(vigra::Shape2(1,2),vigra::Shape2(-2,-3)) ;
// alternatively, just use the same for both
array_type containArray ( imageInfo.shape() );
view_type imageArray ( containArray ) ;
vigra::importImage(imageInfo, imageArray);
// test these boundary conditions:
vspline::bc_code bcs[] =
{
vspline::MIRROR ,
vspline::REFLECT ,
vspline::NATURAL ,
vspline::PERIODIC
} ;
for ( int b = 0 ; b < 4 ; b++ )
{
vspline::bc_code bc = bcs[b] ;
for ( int spline_degree = 1 ; spline_degree < 8 ; spline_degree++ )
{
#if defined USE_VC
cout << "testing bc code " << vspline::bc_name[bc]
<< " spline degree " << spline_degree
<< " using Vc" << endl ;
#elif defined USE_HWY
cout << "testing bc code " << vspline::bc_name[bc]
<< " spline degree " << spline_degree
<< " using highway" << endl ;
#elif defined USE_STDSIMD
cout << "testing bc code " << vspline::bc_name[bc]
<< " spline degree " << spline_degree
<< " using std::simd" << endl ;
#else
cout << "testing bc code " << vspline::bc_name[bc]
<< " spline degree " << spline_degree
<< " using SIMD emulation" << endl ;
#endif
if ( spline_degree == 0 )
{
std::cout << "using specialized evaluator" << std::endl ;
error = run_test < view_type , real_type , rc_type , 0 >
( imageArray , bc , spline_degree ) ;
if ( error > max_error )
max_error = error ;
std::cout << "using unspecialized evaluator" << std::endl ;
error = run_test < view_type , real_type , rc_type , -1 >
( imageArray , bc , spline_degree ) ;
if ( error > max_error )
max_error = error ;
}
else if ( spline_degree == 1 )
{
std::cout << "using specialized evaluator" << std::endl ;
error = run_test < view_type , real_type , rc_type , 1 >
( imageArray , bc , spline_degree ) ;
if ( error > max_error )
max_error = error ;
std::cout << "using unspecialized evaluator" << std::endl ;
error = run_test < view_type , real_type , rc_type , -1 >
( imageArray , bc , spline_degree ) ;
if ( error > max_error )
max_error = error ;
}
else
{
error = run_test < view_type , real_type , rc_type , -1 >
( imageArray , bc , spline_degree ) ;
if ( error > max_error )
max_error = error ;
}
}
}
return max_error ;
}
int main ( int argc , char * argv[] )
{
long double max_error = 0.0L ;
long double error ;
cout << "testing float data, float coordinates" << endl ;
error = process_image<float,float> ( argv[1] ) ;
if ( error > max_error )
max_error = error ;
cout << "max error of float/float test: " << error << std::endl << std::endl ;
cout << endl << "testing double data, double coordinates" << endl ;
error = process_image<double,double> ( argv[1] ) ;
if ( error > max_error )
max_error = error ;
cout << "max error of double/double test: " << error << std::endl << std::endl ;
cout << endl << "testing long double data, float coordinates" << endl ;
error = process_image<long double,float> ( argv[1] ) ;
if ( error > max_error )
max_error = error ;
cout << "max error of ldouble/float test: " << error << std::endl << std::endl ;
cout << endl << "testing long double data, double coordinates" << endl ;
error = process_image<long double,double> ( argv[1] ) ;
if ( error > max_error )
max_error = error ;
cout << "max error of ldouble/double test: " << error << std::endl << std::endl ;
cout << "testing float data, double coordinates" << endl ;
error = process_image<float,double> ( argv[1] ) ;
if ( error > max_error )
max_error = error ;
cout << "max error of float/double test: " << error << std::endl << std::endl ;
cout << endl << "testing double data, float coordinates" << endl ;
error = process_image<double,float> ( argv[1] ) ;
if ( error > max_error )
max_error = error ;
cout << "max error of double/float test: " << error << std::endl << std::endl ;
cout << "reached end. max error of all tests: " << max_error << std::endl ;
}
|