1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
|
/************************************************************************/
/* */
/* vspline - a set of generic tools for creation and evaluation */
/* of uniform b-splines */
/* */
/* Copyright 2015 - 2023 by Kay F. Jahnke */
/* */
/* Permission is hereby granted, free of charge, to any person */
/* obtaining a copy of this software and associated documentation */
/* files (the "Software"), to deal in the Software without */
/* restriction, including without limitation the rights to use, */
/* copy, modify, merge, publish, distribute, sublicense, and/or */
/* sell copies of the Software, and to permit persons to whom the */
/* Software is furnished to do so, subject to the following */
/* conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the */
/* Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES */
/* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND */
/* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT */
/* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, */
/* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING */
/* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR */
/* OTHER DEALINGS IN THE SOFTWARE. */
/* */
/************************************************************************/
/// \file slice.cc
///
/// \brief create 2D image data from a 3D spline
///
/// build a 3D volume from samples of the RGB colour space
/// build a spline over it and extract a 2D slice, using vspline::transform()
/// In this example, we use an 'array-based' transform, where the coordinates
/// at which the spline is to be evaluated are held in an array of the same
/// extent as the target.
///
/// compile with:
/// clang++ -std=c++11 -march=native -o slice -O3 -pthread -DUSE_VC=1 slice.cc \
/// -lvigraimpex -lVc
/// (with Vc; use -DUSE_HWY and -lhwy for highway, or -std=c++17 and -DUSE_STDSIMD
/// for the std::simd backend)
/// or: clang++ -std=c++11 -march=native -o slice -O3 -pthread slice.cc -lvigraimpex
/// (without a SIMD backend)
/// g++ also works.
#include <iostream>
#include <vspline/vspline.h>
#include <vigra/stdimage.hxx>
#include <vigra/imageinfo.hxx>
#include <vigra/impex.hxx>
int main ( int argc , char * argv[] )
{
// pixel_type is the result type, an RGB float pixel
typedef vigra::TinyVector < float , 3 > pixel_type ;
// voxel_type is the source data type - the same as pixel_type
typedef vigra::TinyVector < float , 3 > voxel_type ;
// coordinate_3d has a 3D coordinate
typedef vigra::TinyVector < float , 3 > coordinate_3d ;
// warp_type is a 2D array of coordinates
typedef vigra::MultiArray < 2 , coordinate_3d > warp_type ;
// target_type is a 2D array of pixels
typedef vigra::MultiArray < 2 , pixel_type > target_type ;
// we want a b-spline with natural boundary conditions
vigra::TinyVector < vspline::bc_code , 3 > bcv ( vspline::NATURAL ) ;
// create quintic 3D b-spline object containing voxels
vspline::bspline < voxel_type , 3 >
space ( vigra::Shape3 ( 10 , 10 , 10 ) , 5 , bcv ) ;
// fill the b-spline's core with a three-way gradient
for ( int z = 0 ; z < 10 ; z++ )
{
for ( int y = 0 ; y < 10 ; y++ )
{
for ( int x = 0 ; x < 10 ; x++ )
{
voxel_type & c ( space.core [ vigra::Shape3 ( x , y , z ) ] ) ;
c[0] = 25.5 * x ;
c[1] = 25.5 * y ;
c[2] = 25.5 * z ;
}
}
}
// prefilter the b-spline
space.prefilter() ;
// get an evaluator for the b-spline
typedef vspline::evaluator < coordinate_3d , voxel_type > ev_type ;
ev_type ev ( space ) ;
// now make a 'warp' array with 1920X1080 3D coordinates
warp_type warp ( vigra::Shape2 ( 1920 , 1080 ) ) ;
// we want the coordinates to follow this scheme:
// warp(x,y) = (x,1-x,y)
// scaled appropriately
for ( int y = 0 ; y < 1080 ; y++ )
{
for ( int x = 0 ; x < 1920 ; x++ )
{
coordinate_3d & c ( warp [ vigra::Shape2 ( x , y ) ] ) ;
c[0] = float ( x ) / 192.0 ;
c[1] = 10.0 - c[0] ;
c[2] = float ( y ) / 108.0 ;
}
}
// this is where the result should go:
target_type target ( vigra::Shape2 ( 1920 , 1080 ) ) ;
// now we perform the transform, yielding the result
vspline::transform ( ev , warp , target ) ;
// store the result with vigra impex
vigra::ImageExportInfo imageInfo ( "slice.tif" );
vigra::exportImage ( target ,
imageInfo
.setPixelType("UINT8")
.setCompression("100")
.setForcedRangeMapping ( 0 , 255 , 0 , 255 ) ) ;
std::cout << "result was written to slice.tif" << std::endl ;
exit ( 0 ) ;
}
|