1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
|
/************************************************************************/
/* */
/* vspline - a set of generic tools for creation and evaluation */
/* of uniform b-splines */
/* */
/* Copyright 2015 - 2023 by Kay F. Jahnke */
/* */
/* Permission is hereby granted, free of charge, to any person */
/* obtaining a copy of this software and associated documentation */
/* files (the "Software"), to deal in the Software without */
/* restriction, including without limitation the rights to use, */
/* copy, modify, merge, publish, distribute, sublicense, and/or */
/* sell copies of the Software, and to permit persons to whom the */
/* Software is furnished to do so, subject to the following */
/* conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the */
/* Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES */
/* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND */
/* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT */
/* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, */
/* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING */
/* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR */
/* OTHER DEALINGS IN THE SOFTWARE. */
/* */
/************************************************************************/
/*! \file verify.cc
\brief verify bspline interpolation against polynomial
A b-spline is a piecewise polynomial function. Therefore, it should
model a polynomial of the same degree precisely. This program tests
this assumption.
While the test should hold throughout, we have to limit it to
'reasonable' degrees, because we have to create the spline over
a range sufficiently large to make margin errors disappear,
so even if we want to, say, only look at the spline's values
between 0 and 1, we have to have a few ten or even 100 values
to the left and right of this interval, because the polynomial
does not exhibit convenient features like periodicity or
mirroring on the bounds. But since a polynomial, outside
[-1,1], grows with the power of it's degree, the values around
the test interval become very large very quickly with high
degrees. We can't reasonable expect to calculate a meaningful
spline over such data. The test shows how the measured fidelity
degrades with higher degrees due to this effect.
still , with 'reasonable' degrees, we see that the spline fits the
signal very well indeed, demonstrating that the spline can
faithfully represent a polynomial of equal degree.
*/
#include <iostream>
#include <typeinfo>
#include <random>
#include <vigra/multi_array.hxx>
#include <vigra/accumulator.hxx>
#include <vigra/multi_math.hxx>
#include <vspline/vspline.h>
template < class dtype >
struct random_polynomial
{
int degree ;
std::vector < dtype > coefficient ;
// set up a polynomial with random coefficients in [0,1]
random_polynomial ( int _degree )
: degree ( _degree ) ,
coefficient ( _degree + 1 )
{
std::random_device rd ;
std::mt19937 gen ( rd() ) ;
std::uniform_real_distribution<> dis ( -1.0 , 1.0 ) ;
for ( auto & e : coefficient )
e = dis ( gen ) ;
}
// evaluate the polynomial at x
dtype operator() ( dtype x )
{
dtype power = 1 ;
dtype result = 0 ;
for ( auto e : coefficient )
{
result += e * power ;
power *= x ;
}
return result ;
}
} ;
template < class dtype >
void polynominal_test ( int degree , const char * type_name )
{
// this is the function we want to model:
random_polynomial < long double > rp ( degree ) ;
// we evaluate this function in the range [-200,200[
// note that for high degrees, the signal will grow very
// large outside [-1,1], 'spoiling' the test
vigra::MultiArray < 1 , dtype > data ( vigra::Shape1 ( 400 ) ) ;
for ( int i = 0 ; i < 400 ; i++ )
{
dtype x = ( i - 200 ) ;
data[i] = rp ( x ) ;
}
// we create a b-spline over these data
vspline::bspline < dtype , 1 > bspl ( 400 , degree , vspline::NATURAL , 0.0 ) ;
bspl.prefilter ( data ) ;
auto ev = vspline::make_evaluator < decltype(bspl), dtype > ( bspl ) ;
// to test the spline against the polynomial, we generate random
// arguments in [-2,2]
std::random_device rd ;
std::mt19937 gen ( rd() ) ;
std::uniform_real_distribution<long double> dis ( -2.0 , 2.0 ) ;
long double signal = 0 ;
long double spline = 0 ;
long double noise = 0 ;
long double error ;
long double max_error = 0 ;
// now we evaluate the spline and the polynomial at equal arguments
// and do the statistics
for ( int i = 0 ; i < 10000 ; i++ )
{
long double x = dis ( gen ) ;
long double p = rp ( dtype ( x ) ) ;
// note how we have to translate x to spline coordinates here
long double s = ev ( dtype ( x + 200 ) ) ;
error = std::fabs ( p - s ) ;
if ( error > max_error )
max_error = error ;
signal += std::fabs ( p ) ;
spline += std::fabs ( s ) ;
noise += error ;
}
// note: with optimized code, this does not work:
if ( std::isnan ( noise ) || std::isnan ( noise ) )
{
std::cout << type_name << " aborted due to numeric overflow" << std::endl ;
return ;
}
long double mean_error = noise / 10000.0L ;
// finally we echo the results of the test
std::cout << type_name
<< " Mean error: "
<< mean_error
<< " Maximum error: "
<< max_error
<< " SNR "
<< int ( 20 * std::log10 ( signal / noise ) )
<< "dB"
<< std::endl ;
}
int main ( int argc , char * argv[] )
{
std::cout << std::fixed << std::showpos << std::showpoint
<< std::setprecision(18) ;
for ( int degree = 1 ; degree < 15 ; degree++ )
{
std::cout << "testing spline against polynomial, degree " << degree << std::endl ;
polynominal_test < float > ( degree , "using float........" ) ;
polynominal_test < double > ( degree , "using double......." ) ;
polynominal_test < long double > ( degree , "using long double.." ) ;
}
}
|