1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
|
/* The MIT License
Copyright (c) 2015 Adrian Tan <atks@umich.edu>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
#include "candidate_motif_picker.h"
/**
* Constructor.
*/
CandidateMotifPicker::CandidateMotifPicker(bool debug)
{
max_mlen = 10;
mt = new MotifTree(max_mlen, debug);
this->debug = debug;
};
/**
* Destructor.
*/
CandidateMotifPicker::~CandidateMotifPicker()
{
delete mt;
}
/**
* Pick candidate motifs in different modes.
* Invokes motif tree and the candidate motifs are stored in a
* heap within the motif tree.
*
* 1. gets reference sequence from the REF column of a VCF record
* 2. examines this sequence for candidate motifs that are stored in the priority queue in the MotifTree class.
* 3. the candidate motifs are then to be accessed via next_motif()
*/
void CandidateMotifPicker::generate_candidate_motifs(Variant& variant)
{
if (debug)
{
std::cerr << "********************************************\n";
std::cerr << "PICK CANDIDATE MOTIFS\n\n";
}
this->v = variant.v;
bool alt_is_longest_allele = false;
char** alleles = bcf_get_allele(v);
uint32_t pos1 = bcf_get_pos1(v);
uint32_t n_allele = bcf_get_n_allele(v);
uint32_t longest_allele_index = 0;
uint32_t ref_len = strlen(alleles[0]);
uint32_t longest_allele_length = ref_len;
for (uint32_t i=1; i<n_allele; ++i)
{
uint32_t len = strlen(alleles[i]);
if (len>longest_allele_length)
{
longest_allele_index = i;
longest_allele_length = len;
}
}
if (debug)
{
std::cerr << "Alleles : ";
for (uint32_t i=0; i<n_allele; ++i)
{
if (i) std::cerr << ",";
std::cerr << alleles[i];
}
std::cerr << "\n";
std::cerr << "Repeat Tract Position : [" << variant.vntr.exact_beg1 << "," << variant.vntr.exact_end1 << "]\n";
std::cerr << "Repeat Tract : " << variant.vntr.exact_repeat_tract << "\n";
std::cerr << "Longest Allele : " << alleles[longest_allele_index] << "\n";
std::cerr << "Longest Allele index : " << longest_allele_index << "\n";
}
if (longest_allele_index)
{
//in the case of multiallelics, because the repeat tract is actually obtain by merging a regions from
//pairwise left and right alignment of the alternative alleles with the reference allele, it is possible that the
//tract occurs prior to the position of the multiallelic variant.
int32_t offset = 0;
if (variant.vntr.exact_beg1<pos1)
{
offset = bcf_get_pos1(v) - variant.vntr.exact_beg1;
}
std::string spiked_seq = variant.vntr.exact_repeat_tract;
spiked_seq.replace(offset, ref_len, alleles[longest_allele_index]);
mt->detect_candidate_motifs(spiked_seq);
if (debug)
{
//this implictly requires that the variants are left aligned.
std::string spiked_seq = variant.vntr.exact_repeat_tract;
std::cerr << "\texact repeat tract " << variant.vntr.exact_repeat_tract << "\n";
std::cerr << "\trbeg1 " << variant.vntr.exact_beg1 << "\n";
std::cerr << "\tpos1 " << bcf_get_pos1(v) << "\n";
std::cerr << "\toffset " << offset << "\n";
std::cerr << "\treplace length " << ref_len << "\n";
// spiked_seq.replace(variant.vntr.exact_beg1-bcf_get_pos1(v), strlen(alleles[0]), alleles[longest_allele_index]);
// spiked_seq.insert(variant.vntr.exact_beg1-bcf_get_pos1(v), 1, '[');
// spiked_seq.insert(variant.vntr.exact_beg1-bcf_get_pos1(v)+ strlen(alleles[longest_allele_index])+1, 1, ']');
// std::cerr << "Spiked Longest Allele : " << spiked_seq << "\n";
}
}
else
{
mt->detect_candidate_motifs(variant.vntr.exact_repeat_tract);
}
}
/**
* Generate candidate motifs from a repeat tract.
*
* 1. assigns the repeat_tract to the fuzzy_repeat_tract field of the variants VNTR.
* 2. examines this sequence for candidate motifs that are stored in the priority queue in the MotifTree class.
* 3. the candidate motifs are then to be accessed via next_motif()
*/
void CandidateMotifPicker::generate_candidate_motifs(char* repeat_tract, Variant& variant)
{
// std::cerr << "INVOKED??\n" ;
variant.vntr.fuzzy_repeat_tract.assign(repeat_tract);
// std::cerr << "assigned repeat tract" << repeat_tract << "\n";
mt->detect_candidate_motifs(variant.vntr.fuzzy_repeat_tract);
// std::cerr << mt->pcm.size() << "\n";
}
/**
* Initialize candidate motif from VCF record.
*/
void CandidateMotifPicker::set_motif_from_info_field(Variant& variant)
{
VNTR& vntr = variant.vntr;
char *motif = NULL;
int32_t n = 0;
if (bcf_get_info_string(variant.h, variant.v, "MOTIF", &motif, &n)>0)
{
vntr.motif.assign(motif);
vntr.basis = vntr.get_basis(vntr.motif);
vntr.mlen = vntr.motif.size();
vntr.blen = vntr.basis.size();
free(motif);
}
else
{
vntr.motif = "";
}
}
/**
* Gets inserted or deleted allele of a biallelic indel.
*
* Returns true if indel allele is simple and false if ambiguous
*/
bool CandidateMotifPicker::get_indel(std::string ref, std::string alt, std::string& indel)
{
//trim right
while (ref.size()!=0 && alt.size()!=0 && ref.at(ref.size()-1)==alt.at(alt.size()-1))
{
ref.erase(ref.size()-1, 1);
alt.erase(alt.size()-1, 1);
}
//trim left
while (ref.size()!=0 && alt.size()!=0 && ref.at(0)==alt.at(0))
{
ref.erase(0, 1);
alt.erase(0, 1);
}
if (ref.size()==0)
{
indel.assign(alt);
return true;
}
if (alt.size()==0)
{
indel.assign(ref);
return true;
}
//not a simple indel
if (ref.size()>alt.size())
{
indel.assign(ref.substr(alt.size(),ref.size()-alt.size()));
}
else if (ref.size()<alt.size())
{
indel.assign(alt.substr(ref.size(),alt.size()-ref.size()));
}
else
{
fprintf(stderr, "[%s:%d %s] Not an indel!!!! ref:%s alt:%s\n", __FILE__, __LINE__, __FUNCTION__, ref.c_str(), alt.c_str());
exit(1);
}
return false;
}
/**
* Updates the motif of an indel allele.
*
* Returns true if the motif is from a simple indel.
* Returns false if the motif is ambiguous.
*/
void CandidateMotifPicker::update_exact_repeat_unit(Variant& variant)
{
VNTR& vntr = variant.vntr;
bcf1_t* v = variant.v;
char** alleles = bcf_get_allele(v);
int32_t n_allele = bcf_get_n_allele(v);
std::string ref;
std::string alt;
std::string indel;
std::string indel_repeat_unit;
if (debug)
{
std::cerr << "********************************************\n";
std::cerr << "UPDATE EXACT REPEAT UNIT\n\n";
}
if (n_allele==2)
{
ref.assign(alleles[0]);
alt.assign(alleles[1]);
bool is_simple_indel = get_indel(ref, alt, indel);
if (is_simple_indel)
{
int32_t i = VNTR::is_periodic(indel);
if (i)
{
indel_repeat_unit.assign(indel.substr(0, i));
}
else
{
indel_repeat_unit.assign(indel);
}
if (debug) std::cerr << "simple indel: " << ref << "/" << alt << " => " << indel_repeat_unit << "\n";
}
else
{
indel_repeat_unit.assign(indel);
if (debug) std::cerr << "NON simple indel: " << ref << "/" << alt << " => " << indel_repeat_unit << "\n";
}
vntr.exact_ru_ambiguous = !is_simple_indel;
}
else
{
if (debug)
{
std::cerr << "multiallelic: examine all alleles\n";
}
bool all_are_simple_indels = true;
std::map<std::string, int32_t> indels;
for (int32_t i=1; i<n_allele; ++i)
{
ref.assign(alleles[0]);
alt.assign(alleles[i]);
if (debug) std::cerr << "allele: " << i << "\n";
if (ref.size()==alt.size())
{
if (debug) std::cerr << "\tnon indel: " << ref << "/" << alt << "\n";
continue;
}
bool is_simple_indel = get_indel(ref, alt, indel);
all_are_simple_indels = all_are_simple_indels && is_simple_indel;
if (is_simple_indel)
{
int32_t i = VNTR::is_periodic(indel);
if (i)
{
indel_repeat_unit.assign(indel.substr(0, i));
}
else
{
indel_repeat_unit.assign(indel);
}
if (debug) std::cerr << "\tsimple indel: " << ref << "/" << alt << " => " << indel_repeat_unit << "\n";
}
else
{
indel_repeat_unit.assign(indel);
if (debug) std::cerr << "\tNON simple indel: " << ref << "/" << alt << " => " << indel_repeat_unit << "\n";
}
++indels[indel_repeat_unit];
}
if (debug) std::cerr << "\narbitrating ...\n";
std::map<std::string, int32_t>::iterator i = indels.begin();
std::string best_repeat_unit = "";
int32_t best_count = 0;
while (i!=indels.end())
{
if (debug) std::cerr << "\t" << i->first << " : " << i->second << "\n";
if (i->second>best_count)
{
best_repeat_unit = i->first;
best_count = i->second;
}
++i;
}
if (debug) std::cerr << "select : " << best_repeat_unit << " (" << best_count << ")\n";
vntr.exact_ru_ambiguous = !all_are_simple_indels;
indel_repeat_unit = best_repeat_unit;
}
vntr.exact_ru = indel_repeat_unit;
vntr.exact_motif = VNTR::canonicalize2(indel_repeat_unit);
vntr.exact_basis = VNTR::get_basis(vntr.exact_motif);
vntr.exact_mlen = vntr.exact_motif.size();
vntr.exact_blen = vntr.exact_basis.size();
}
/**
* Iterates through the candidate motifs detected in the motif tree.
*
* 1. examines it if the motif is represented in the motif tree.
* and updated the motif field in the VNTR object of variant
* with the candidate motif.
* 2.
*
*/
bool CandidateMotifPicker::next_motif(Variant& variant, int32_t mode)
{
if (mode==CHECK_MOTIF_PRESENCE_IN_ALLELE)
{
if (debug)
{
std::cerr << "********************************************\n";
std::cerr << "PICKING NEXT BEST MOTIF\n\n";
}
while (!mt->pcm.empty())
{
CandidateMotif cm = mt->pcm.top();
//check for existence of pattern in indel sequence
if (is_in_indel_fragment(cm.motif))
{
if (debug)
{
printf("selected: %10s %.2f %.2f\n", mt->pcm.top().motif.c_str(),
mt->pcm.top().score,
mt->pcm.top().fit);
}
VNTR& vntr = variant.vntr;
vntr.fuzzy_motif = VNTR::canonicalize2(cm.motif);
vntr.fuzzy_basis = VNTR::get_basis(cm.motif);
vntr.fuzzy_mlen = vntr.fuzzy_motif.size();
vntr.fuzzy_blen = vntr.fuzzy_basis.size();
mt->pcm.pop();
return true;
}
else
{
if (debug)
{
printf("rejected: %10s %.2f %.2f (not in indel fragment)\n",
mt->pcm.top().motif.c_str(),
mt->pcm.top().score,
mt->pcm.top().fit);
}
mt->pcm.pop();
}
}
return false;
}
else if (mode==NO_REQUIREMENT)
{
if (!mt->pcm.empty())
{
CandidateMotif cm = mt->pcm.top();
variant.vntr.motif = cm.motif;
variant.vntr.basis = VNTR::get_basis(cm.motif);
variant.vntr.mlen = cm.motif.size();
variant.vntr.blen = variant.vntr.basis.size();
variant.vntr.fuzzy_motif = variant.vntr.motif;
variant.vntr.fuzzy_basis = variant.vntr.basis;
variant.vntr.fuzzy_mlen = variant.vntr.mlen;
variant.vntr.fuzzy_blen = variant.vntr.blen;
mt->pcm.pop();
// std::cerr << variant.vntr.motif << " " << variant.vntr.motif_score << "\n";
return true;
}
return false;
}
else
{
fprintf(stderr, "[E:%s:%d %s] Motif picking mode not recognized : %d\n", __FILE__, __LINE__, __FUNCTION__, mode);
exit(1);
return false;
}
}
/**
* Checks if motif is in indel fragment.
*/
bool CandidateMotifPicker::is_in_indel_fragment(std::string motif)
{
for (uint32_t i=0; i<motif.size(); ++i)
{
std::string shifted_motif = motif.substr(i) + motif.substr(0,i);
char** alleles = bcf_get_allele(v);
uint32_t n_allele = bcf_get_n_allele(v);
for (uint32_t i=0; i<n_allele; ++i)
{
if (strstr(alleles[i], shifted_motif.c_str()))
{
return true;
}
}
}
return false;
}
/**
* Chooses a phase of the motif that is appropriate for the alignment
*/
std::string CandidateMotifPicker::choose_repeat_unit(std::string& ref, std::string& motif)
{
for (uint32_t i=0; i<motif.size(); ++i)
{
std::string smotif = mt->shift_str(motif, i);
if (ref.compare(0, smotif.size(), smotif)==0)
{
return smotif;
}
}
return motif;
}
|