File: paste_and_compute_features_sequential.cpp

package info (click to toggle)
vt 0.57721%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, forky, sid, trixie
  • size: 21,680 kB
  • sloc: cpp: 51,772; makefile: 348; sh: 206
file content (771 lines) | stat: -rw-r--r-- 33,141 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
/* The MIT License

   Copyright (c)  2015 Hyun Min Kang and Adrian Tan <atks@umich.edu>

   Permission is hereby granted, free of charge, to any person obtaining a copy
   of this software and associated documentation files (the "Software"), to deal
   in the Software without restriction, including without limitation the rights
   to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
   copies of the Software, and to permit persons to whom the Software is
   furnished to do so, subject to the following conditions:

   The above copyright notice and this permission notice shall be included in
   all copies or substantial portions of the Software.

   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
   IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
   AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
   LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
   OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
   THE SOFTWARE.
*/

#include "paste_and_compute_features_sequential.h"

namespace
{

class Igor : Program
{
    public:

    std::string version;

    ///////////
    //options//
    ///////////
    std::vector<std::string> input_vcf_files;
    std::string input_vcf_file_list;
    std::string output_vcf_file;
    bool print;
    std::vector<GenomeInterval> intervals;
    int32_t maxBQ;

    ///////
    //i/o//
    ///////
    BCFOrderedReader *odr;
    BCFOrderedWriter *odw;

    ///////////////
    //general use//
    ///////////////

    /////////
    //stats//
    /////////

    /////////
    //tools//
    /////////

    // The function assumes a particular list of features in the BCF files
    //

    Igor(int argc, char ** argv)
    {
        //////////////////////////
        //options initialization//
        //////////////////////////
        try
        {
            std::string desc = "Pastes VCF files like the unix paste functions.\n"
                 "              This is used after the per sample genotyping step in vt.\n"
                 "              Input requirements and assumptions:\n"
                 "              1. Same variants are represented in the same order for each file (required)\n"
                 "              2. Genotype fields are the same for corresponding records (required)\n"
                 "              3. Sample names are different in all the files (warning will be given if not)\n"
                 "              4. Headers (not including the samples) are the same for all the files (unchecked assumption, will fail if output is BCF)\n"
                 "              Outputs:\n"
                 "              1. INFO fields output will be that of the first file\n"
                 "              2. Genotype fields are the same for corresponding records\n";


            version = "0.1";
            TCLAP::CmdLine cmd(desc, ' ', version);
            VTOutput my; cmd.setOutput(&my);
            TCLAP::SwitchArg arg_print("p", "p", "print options and summary []", cmd, false);
            TCLAP::ValueArg<std::string> arg_output_vcf_file("o", "o", "output VCF file [-]", false, "-", "", cmd);
            TCLAP::ValueArg<std::string> arg_input_vcf_file_list("L", "L", "file containing list of input VCF files", false, "", "str", cmd);
            TCLAP::UnlabeledMultiArg<std::string> arg_input_vcf_files("<in1.vcf>...", "Multiple VCF files",false, "files", cmd);
            TCLAP::ValueArg<std::string> arg_intervals("i","i","Intervals[]", false, "", "str", cmd);
            TCLAP::ValueArg<std::string> arg_interval_list("I", "I", "file containing list of intervals []", false, "", "file", cmd);
            TCLAP::ValueArg<int32_t> arg_max_bq("q", "q", "Maximum base quality to cap []", false, 30, "int", cmd);

            cmd.parse(argc, argv);

            input_vcf_file_list = arg_input_vcf_file_list.getValue();
            output_vcf_file = arg_output_vcf_file.getValue();
            parse_files(input_vcf_files, arg_input_vcf_files.getValue(), arg_input_vcf_file_list.getValue());
            const std::vector<std::string>& v = arg_input_vcf_files.getValue();
            print = arg_print.getValue();
            maxBQ = arg_max_bq.getValue();
            parse_intervals(intervals, arg_interval_list.getValue(), arg_intervals.getValue());

            if (input_vcf_files.size()==0)
            {
                fprintf(stderr, "[E:%s:%d %s] no input vcf files.\n", __FILE__, __LINE__, __FUNCTION__);
                exit(1);
            }

        }
        catch (TCLAP::ArgException &e)
        {
            std::cerr << "error: " << e.error() << " for arg " << e.argId() << "\n";
            abort();
        }
    };

    void initialize()
    {
        //////////////////////
        //i/o initialization//
        //////////////////////
        // read only the first file
        odr = new BCFOrderedReader(input_vcf_files[0], intervals);
        if ( intervals.size() > 1 )
        {
            fprintf(stderr, "[E:%s:%d %s] Multiple intervals are not allowed\n", __FILE__, __LINE__, __FUNCTION__);
            exit(1);
        }

        //for (size_t i=0; i<input_vcf_files.size(); ++i)
        //{
        //    odrs.push_back(new BCFOrderedReader(input_vcf_files[i], intervals));
        //}
        odw = new BCFOrderedWriter(output_vcf_file, 0);

        odw->set_hdr(odr->hdr);

        bcf_hdr_append(odw->hdr, "##INFO=<ID=AVGDP,Number=1,Type=Float,Description=\"Average Depth per Sample\">\n");
        bcf_hdr_append(odw->hdr, "##INFO=<ID=AC,Number=A,Type=Integer,Description=\"Alternate Allele Counts\">\n");
        bcf_hdr_append(odw->hdr, "##INFO=<ID=AN,Number=1,Type=Integer,Description=\"Total Number Allele Counts\">\n");
        //bcf_hdr_append(odw->hdr, "##INFO=<ID=NS,Number=1,Type=Integer,Description=\"Number of Samples With Reads\">\n");
        bcf_hdr_append(odw->hdr, "##INFO=<ID=AF,Number=A,Type=Float,Description=\"Alternate Allele Frequency from Best-guess Genotypes\">\n");
        bcf_hdr_append(odw->hdr, "##INFO=<ID=GC,Number=G,Type=Integer,Description=\"Genotype Counts\">\n");
        bcf_hdr_append(odw->hdr, "##INFO=<ID=GN,Number=1,Type=Integer,Description=\"Total Number of Genotypes\">\n");
        bcf_hdr_append(odw->hdr, "##INFO=<ID=HWEAF,Number=A,Type=Float,Description=\"Genotype likelihood based Allele Frequency assuming HWE\">\n");
        bcf_hdr_append(odw->hdr, "##INFO=<ID=HWDGF,Number=G,Type=Float,Description=\"Genotype likelihood based Genotype Frequency ignoring HWE\">\n");
        bcf_hdr_append(odw->hdr, "##INFO=<ID=IBC,Number=1,Type=Float,Description=\"Inbreeding Coefficients calculated from genotype likelihoods\">\n");
        bcf_hdr_append(odw->hdr, "##INFO=<ID=HWE_SLP,Number=1,Type=Float,Description=\"Signed log p-values testing  statistics based Hardy Weinberg ln(Likelihood Ratio)\">\n");
        bcf_hdr_append(odw->hdr, "##INFO=<ID=ABE,Number=1,Type=Float,Description=\"Expected allele Balance towards Reference Allele on Heterozygous Sites\">\n");
        bcf_hdr_append(odw->hdr, "##INFO=<ID=ABZ,Number=1,Type=Float,Description=\"Average Z-scores of Allele Balance towards Reference Allele on Heterozygous Sites\">\n");
        bcf_hdr_append(odw->hdr, "##INFO=<ID=NS_NREF,Number=1,Type=Integer,Description=\"Number of samples with non-reference reads\">\n");
        bcf_hdr_append(odw->hdr, "##INFO=<ID=BQZ,Number=1,Type=Float,Description=\"Correlation between base quality and alleles\">\n");
        //bcf_hdr_append(odw->hdr, "##INFO=<ID=MQZ,Number=1,Type=Float,Description=\"Correlation between mapping quality and alleles\">\n");
        bcf_hdr_append(odw->hdr, "##INFO=<ID=CYZ,Number=1,Type=Float,Description=\"Correlation between cycle and alleles\">\n");
        bcf_hdr_append(odw->hdr, "##INFO=<ID=STZ,Number=1,Type=Float,Description=\"Correlation between strand and alleles\">\n");
        bcf_hdr_append(odw->hdr, "##INFO=<ID=NMZ,Number=1,Type=Float,Description=\"Correlation between mismatch counts per read and alleles\">\n");
        bcf_hdr_append(odw->hdr, "##INFO=<ID=IOR,Number=1,Type=Float,Description=\"Inflated rate of observing of other alleles in log10 scale\">\n");
        bcf_hdr_append(odw->hdr, "##INFO=<ID=NM0,Number=1,Type=Float,Description=\"Average number of mismatches in the reads with ref alleles\">\n");
        bcf_hdr_append(odw->hdr, "##INFO=<ID=NM1,Number=1,Type=Float,Description=\"Average number of mismatches in the reads with non-ref alleles\">\n");
        bcf_hdr_append(odw->hdr, "##FORMAT=<ID=GT,Number=1,Type=String,Description=\"Genotype\">\n");
        bcf_hdr_append(odw->hdr, "##FORMAT=<ID=GQ,Number=1,Type=Integer,Description=\"Genotype Quality\">\n");
        bcf_hdr_append(odw->hdr, "##FORMAT=<ID=AD,Number=A,Type=Integer,Description=\"Allele Depth\">\n");
        bcf_hdr_append(odw->hdr, "##FORMAT=<ID=OD,Number=1,Type=Integer,Description=\"Other Allele Depth\">\n");
        bcf_hdr_append(odw->hdr, "##FORMAT=<ID=PL,Number=G,Type=Integer,Description=\"Phred-scale Genotype Likelihoods\">\n");

        ///////////////
        //general use//
        ///////////////

        ////////////////////////
        //stats initialization//
        ////////////////////////

        /////////
        //tools//
        /////////
    }


    float compute_correlation(int32_t n, int32_t xy, int32_t x1, int32_t x2, int32_t y1, int32_t y2, float buffer) {
      if ( n == 0 ) return 0;
      float xsd = x2/(float)n - (x1/(float)n)*(x1/(float)n);
      float ysd = y2/(float)n - (y1/(float)n)*(y1/(float)n);
      return ( ( xy/(float)n - x1 * y1 / (float) n / (float) n ) / sqrt( xsd * ysd + buffer ) );
    }

    float compute_correlation_f(int32_t n, float xy, float x1, float x2, float y1, float y2, float buffer) {
      if ( n == 0 ) return 0;
      float xsd = x2/(float)n - (x1/(float)n)*(x1/(float)n);
      float ysd = y2/(float)n - (y1/(float)n)*(y1/(float)n);
      return ( ( xy/(float)n - x1 * y1 / (float) n / (float) n ) / sqrt( xsd * ysd + buffer ) );
    }

    void paste_and_compute_features_sequential()
    {
    // assume that the following features are available
    // 1. BQSUM, DPF, DPR
    // 2. GT, PL, ADF, ADR, DP, CY, ST, AL, NM
    //
    // calculate the following per-variant statistics
    // DP - total depth -- \sum_i (DPF+DPR) + \sum_i DP
    // MLEAF - allele frequency estimated by best guess genotypes
    // HWEAF - allele frequency estimated by genotype likelihood under HWE
    // HWDAF - allele frequency estimated by genotype likelihood under non-HWD
    // SLRT - signed LRT test statistics for departure from HWE
    // IBC - [Pr(Het|HWD)-Pr(Het|HWE)]/Pr(Het|HWE)
    // AB - Allele balance -- \sum_i \sqrt{#A + #R} (#A)/(#A+#R) | GT = HET
    // STR - Strand bias   -- \sum_i \sqrt{#A + #R} cor(FR,FA,RR,RA)
    // TBR - Tail distance bias  -- \sum_i \sqrt{#A + #R} cor(TD,AL)
    // MQR - Mapping quality bias -- \sum_i \sqrt{#A + #R} cor(MQ,AL)
    // BQR - Base quality bias -- \sum_i \sqrt{#A + #R} cor(BQ,AL)
    // NMR - Number of mismatch bias -- \sum \sqrt{#A + #R} cor(NM,AL - A?) | BQ > 20
    // IOR - Inflated fraction of "other" biases compared to base quality -- \sum_i \sqrt{#A + #R} {Pr(O) - E[O]} | BQ > 20
    //
    // calculate the following per-sample statistics
    // GT - best guess genotypes
    // GQ - genotype quality
    // AD - allele depth
    // PL - likelihoods
    //
    // Assume that either
    // BQSUM : DPF : DPR or
    // GT, PL, DP, CY, ST, NM exists

    // store everything into memory
    std::vector<int32_t> vn_alleles;
    std::vector<int32_t> vn_genos;
    std::vector<int32_t*> v_pls;
    std::vector<int32_t*> v_gts;
    std::vector<int32_t*> v_gqs;
    std::vector<int32_t*> v_ads;
    std::vector<int32_t*> v_ods;

    // check the type from FORMAT, first field must be either BQSUM or GT
    int32_t* p_bqsum = NULL;
    int32_t np_bqsum = 0;
    int32_t* p_dp = NULL;
    int32_t np_dp = 0;
    int32_t* p_gt = NULL;
    int32_t np_gt = 0;
    int32_t* p_pl = NULL;
    int32_t np_pl = 0;
    int32_t* p_bq = NULL;
    int32_t np_bq = 0;
    int32_t* p_mq = NULL;
    int32_t np_mq = 0;
    int32_t* p_cy = NULL;
    int32_t np_cy = 0;
    char**   p_st = NULL;
    int32_t np_st = 0;
    int32_t*  p_al = NULL;
    int32_t np_al = 0;
    int32_t* p_nm = NULL;
    int32_t np_nm = 0;

    // read the first genotype file to populate
    int32_t nfiles = input_vcf_files.size();
    std::vector<bool> v_skips;
    std::vector<bool> v_is_snps;
    std::vector<int32_t> v_rids;
    std::vector<int32_t> v_poss;
    std::vector<int32_t> v_rlens;
    std::vector< std::vector<std::string> > v_d_alleles;
    std::vector< std::vector<int32_t> > v_filts;

        bcf1_t* v = bcf_init();
    while( odr->read(v) ) {
      // skip multi-allelics
      bool skip = false;
      bcf_unpack(v, BCF_UN_ALL);

      if ( v->n_allele > 2 ) skip = true;
      else if ( ( !intervals.empty() ) && ( ( v->pos < intervals[0].start1 ) || ( v->pos > intervals[0].end1 ) ) ) skip = true;
      else {
        bool is_vntr = false;
        for(size_t i=0; i < v->n_allele; ++i) {
          if ( strcmp(v->d.allele[i],"<VNTR>") == 0 )
        is_vntr = true;
        }
        if ( is_vntr ) skip = true;
      }

      // determine whether to skip the marker or not
      v_skips.push_back(skip);
      if ( skip ) continue;

      // populate marker information
      v_is_snps.push_back(bcf_is_snp(v));
      v_rids.push_back(v->rid);
      v_poss.push_back(v->pos);
      v_rlens.push_back(v->rlen);
      v_d_alleles.push_back(std::vector<std::string>());
      for(size_t i=0; i < v->n_allele; ++i) {
        v_d_alleles.back().push_back(v->d.allele[i]);
      }
      vn_alleles.push_back(v->n_allele);
      vn_genos.push_back(v->n_allele * (v->n_allele+1)/2);

      v_filts.push_back(std::vector<int32_t>());
      for(size_t i=0; i < v->d.n_flt; ++i) {
        v_filts.back().push_back(v->d.flt[i]);
      }

      // initialize genotype fields
      v_pls.push_back( (int32_t*)calloc( nfiles * vn_genos.back(), sizeof(int32_t) ) );
      v_ads.push_back( (int32_t*)calloc( nfiles * vn_alleles.back(), sizeof(int32_t) ) );
      v_gts.push_back( (int32_t*)calloc( nfiles * 2, sizeof(int32_t) ) );
      v_gqs.push_back( (int32_t*)calloc( nfiles, sizeof(int32_t) ) );
      v_ods.push_back( (int32_t*)calloc( nfiles, sizeof(int32_t) ) );
    }
    odr->close();
    delete odr;

    std::vector<float> v_bqr_nums(v_rids.size(), 0);
    std::vector<float> v_bqr_dens(v_rids.size(), 0);
    std::vector<float> v_mqr_nums(v_rids.size(), 0);
    std::vector<float> v_mqr_dens(v_rids.size(), 0);
    std::vector<float> v_cyr_nums(v_rids.size(), 0);
    std::vector<float> v_cyr_dens(v_rids.size(), 0);
    std::vector<float> v_str_nums(v_rids.size(), 0);
    std::vector<float> v_str_dens(v_rids.size(), 0);
    std::vector<float> v_nmr_nums(v_rids.size(), 0);
    std::vector<float> v_nmr_dens(v_rids.size(), 0);
    std::vector<float> v_ior_nums(v_rids.size(), 0);
    std::vector<float> v_ior_dens(v_rids.size(), 0);
    std::vector<float> v_nm0_nums(v_rids.size(), 0);
    std::vector<float> v_nm0_dens(v_rids.size(), 0);
    std::vector<float> v_nm1_nums(v_rids.size(), 0);
    std::vector<float> v_nm1_dens(v_rids.size(), 0);
    std::vector<float> v_ab_nums(v_rids.size(), 0);
    std::vector<float> v_ab_dens(v_rids.size(), 0);
    std::vector<float> v_abz_nums(v_rids.size(), 0);
    std::vector<float> v_abz_dens(v_rids.size(), 0);
    std::vector<int32_t> v_ns_nrefs(v_rids.size(), 0);
    std::vector<int32_t> v_dp_sums(v_rids.size(), 0);
    std::vector<int32_t> v_max_gqs(v_rids.size(), 0);

    bcf_clear(v);

    for(size_t i=0; i < nfiles; ++i) {
      fprintf(stderr,"Reading input file %s..\n", input_vcf_files[i].c_str());
      // set odr and v
      odr = new BCFOrderedReader(input_vcf_files[i], intervals);
      v = bcf_init();

      if ( bcf_hdr_nsamples(odr->hdr) != 1 ) {
          fprintf(stderr, "[E:%s:%d %s] The genotype file must contain exactly one sample", __FILE__, __LINE__, __FUNCTION__);
          exit(1);
      }
      if ( i > 0 )
        bcf_hdr_add_sample(odw->hdr, bcf_hdr_get_sample_name(odr->hdr, 0));

      for( size_t j=0, k=0; j < v_skips.size(); ++j) {
        if ( ! odr->read(v) ) {
          fprintf(stderr, "[E:%s:%d %s] Cannot read variant from genotype files. j=%zu, k=%zu, pos[k]=%d", __FILE__, __LINE__, __FUNCTION__, j, k, v_poss[k]);
          exit(1);
        }
        if ( v_skips[j] ) continue;
        bcf_unpack(v, BCF_UN_ALL);

        // check marker infor with anchor files
        if ( ( v->rid != v_rids[k] ) || ( v->pos != v_poss[k] ) || ( v->rlen != v_rlens[k] ) || ( v->n_allele != vn_alleles[k] ) ) {
          fprintf(stderr, "[E:%s:%d %s] Variant position or ref alleles does not match\n", __FILE__, __LINE__, __FUNCTION__);
          exit(1);
        }

        for(size_t l=0; l < vn_alleles[k]; ++l) {
          if ( v_d_alleles[k][l].compare(v->d.allele[l]) ) {
          fprintf(stderr, "[E:%s:%d %s] Variant alleles does not match\n", __FILE__, __LINE__, __FUNCTION__);
          exit(1);
          }
        }

        // extract genotype fields and calculate summary statistics
        if ( bcf_get_format_int32(odr->hdr, v, "BQSUM", &p_bqsum, &np_bqsum) >= 0 ) { // BQSUM observed - REF-ONLY
          if ( bcf_get_format_int32(odr->hdr, v, "DP", &p_dp, &np_dp) < 0 ) {
        fprintf(stderr, "[E:%s:%d %s] FORMAT field does not contain expected fields -- BQSUM, DP\n", __FILE__, __LINE__, __FUNCTION__);
        exit(1);
          }
          if ( ( np_bqsum != np_dp ) || ( np_dp != 1 ) ) {
        fprintf(stderr, "[E:%s:%d %s] FORMAT field does not have the samme number of fields -- BQSUM, DP\n", __FILE__, __LINE__, __FUNCTION__);
        exit(1);
          }

          for(size_t l=0; l < vn_alleles[k]; ++l){
        v_ads[k][ i*vn_alleles[k] + l] = (l == 0 ? p_dp[0] : 0);
        v_ods[k][ i ] = 0;
        for(size_t m=0; m <= l; ++m)  {
          if ( m == 0 ) {
            if ( l == 0 )
              v_pls[k][vn_genos[k] * i + l * (l+1) / 2 + m] = 0;
            else
              v_pls[k][vn_genos[k] * i + l * (l+1) / 2 + m] = (int32_t)floor(6.931472 * p_dp[0] + 0.5);
          }
          else
            v_pls[k][vn_genos[k] * i + l * (l+1) / 2 + m] = (int32_t)floor(p_bqsum[0] + 10.98612 * p_dp[0] + 0.5);
          }
          }
          v_dp_sums[k] += p_dp[0];
        }
        else if ( bcf_get_genotypes(odr->hdr, v, &p_gt, &np_gt) >= 0 ) {  // GT unobserved -- non-REF
          // extract PL, DP, BQ, MQ, CY, ST, AL, NM
          if ( bcf_get_format_int32(odr->hdr, v, "PL", &p_pl, &np_pl) < 0 ) {
        fprintf(stderr, "[E:%s:%d %s] FORMAT field does not contain expected fields -- PL\n", __FILE__, __LINE__, __FUNCTION__);
        exit(1);
          }
          if ( bcf_get_format_int32(odr->hdr, v, "DP", &p_dp, &np_dp) < 0 ) {
        fprintf(stderr, "[E:%s:%d %s] FORMAT field does not contain expected fields -- DP\n", __FILE__, __LINE__, __FUNCTION__);
        exit(1);
          }
          if ( bcf_get_format_int32(odr->hdr, v, "BQ", &p_bq, &np_bq) < 0 ) {
        fprintf(stderr, "[E:%s:%d %s] FORMAT field does not contain expected fields -- BQ\n", __FILE__, __LINE__, __FUNCTION__);
        exit(1);
          }
          if ( bcf_get_format_int32(odr->hdr, v, "MQ", &p_mq, &np_mq) < 0 ) {
        fprintf(stderr, "[E:%s:%d %s] FORMAT field does not contain expected fields -- MQ\n", __FILE__, __LINE__, __FUNCTION__);
        exit(1);
          }
          if ( bcf_get_format_int32(odr->hdr, v, "CY", &p_cy, &np_cy) < 0 ) {
        fprintf(stderr, "[E:%s:%d %s] FORMAT field does not contain expected fields -- GT, CY\n", __FILE__, __LINE__, __FUNCTION__);
        exit(1);
          }
          if ( bcf_get_format_string(odr->hdr, v, "ST", &p_st, &np_st) < 0 ) {
        fprintf(stderr, "[E:%s:%d %s] FORMAT field does not contain expected fields -- GT, ST\n", __FILE__, __LINE__, __FUNCTION__);
        exit(1);
          }
          if ( bcf_get_format_int32(odr->hdr, v, "AL", &p_al, &np_al) < 0 ) {
        fprintf(stderr, "[E:%s:%d %s] FORMAT field does not contain expected fields -- GT, AL\n", __FILE__, __LINE__, __FUNCTION__);
        exit(1);
          }
          if ( bcf_get_format_int32(odr->hdr, v, "NM", &p_nm, &np_nm) < 0 ) {
        fprintf(stderr, "[E:%s:%d %s] FORMAT field does not contain expected fields -- GT, NM\n", __FILE__, __LINE__, __FUNCTION__);
        exit(1);
          }

          // sanity checking
          if ( np_pl != vn_genos[k] ) {
        fprintf(stderr, "[E:%s:%d %s] np_pl (%d) != n_genos (%d)\n", __FILE__, __LINE__, __FUNCTION__, np_pl, vn_genos[k]);
        exit(1);
          }

          if ( ( np_dp != 1 ) || ( np_gt != 2 ) ) {
        fprintf(stderr, "[E:%s:%d %s] Assertion failed in np_dp (%d) == np_gt (%d),  np_st (%d) == np_al (%d)\n", __FILE__, __LINE__, __FUNCTION__, np_dp, np_gt, np_st, np_al);
        exit(1);
          }
          if ( p_dp[0] != strlen(p_st[0]) ) {
        fprintf(stderr, "[E:%s:%d %s] Assetion failed - p_dp[0] == strlen(p_st[0])\n", __FILE__, __LINE__, __FUNCTION__);
        exit(1);
          }

          // currently assume everything as diploid
          int32_t a1 = bcf_gt_allele(p_gt[0]);
          int32_t a2 = bcf_gt_allele(p_gt[1]);
          int32_t gt = bcf_alleles2gt(a1, a2);
          for(size_t l=0; l < vn_genos[k]; ++l) {
        v_pls[k][vn_genos[k] * i + l] = p_pl[l];
          }

          v_dp_sums[k] += p_dp[0];

          int32_t bq_s1 = 0;
          int32_t bq_s2 = 0;
          int32_t mq_s1 = 0;
          int32_t mq_s2 = 0;
          float   cy_s1 = 0;
          float   cy_s2 = 0;
          int32_t st_s1 = 0;
          int32_t al_s1 = 0;
          int32_t nm_s1 = 0;
          int32_t nm_s2 = 0;
          int32_t bq_al = 0;
          int32_t mq_al = 0;
          float   cy_al = 0;
          int32_t st_al = 0;
          int32_t nm_al = 0;
          int32_t dp_ra = 0;
          int32_t dp_q20 = 0;
          double  oth_exp_q20 = 0;
          double  oth_obs_q20 = 0;

          int32_t* ads_z = &v_ads[k][ i*vn_alleles[k] ];

          ++v_ns_nrefs[k];

          for(size_t l=0; l < p_dp[0]; ++l) {
        if ( p_bq[l] > maxBQ ) p_bq[l] = maxBQ;

        if ( p_al[l] >= 0 ) {
          if ( p_bq[l] > 20 ) {
            oth_exp_q20 += ( LogTool::pl2prob(p_bq[l]) * 2.0 / 3.0 );
            ++dp_q20;
          }

          // calculate cycle-based tail distance
          float log_td = 0-logf((float)abs(v_is_snps[k] ? p_cy[l] : (int)(rand() % 100))+1.); // temporarily ignore cycles

          ++dp_ra;
          bq_s1 += p_bq[l];
          bq_s2 += (p_bq[l] * p_bq[l]);
          mq_s1 += p_mq[l];
          mq_s2 += (p_mq[l] * p_mq[l]);
          cy_s1 += log_td;
          cy_s2 += (log_td * log_td);
          st_s1 += ((p_st[0][l] == 'F') ? 0 : 1);
          if ( p_al[l] > 0 ) {
            ++al_s1;
            bq_al += p_bq[l];
            mq_al += p_mq[l];
            cy_al += log_td;
            st_al += ((p_st[0][l] == 'F') ? 0 : 1);
            nm_al += (p_nm[l]-1);
            nm_s1 += (p_nm[l]-1);
            nm_s2 += ((p_nm[l]-1)*(p_nm[l]-1));
            ++ads_z[1];
          }
          else {
            nm_s1 += p_nm[l];
            nm_s2 += ( p_nm[l] * p_nm[l] );
            ++ads_z[0];
          }
        }
        else {
          if ( p_bq[l] > 20 ) {
            oth_exp_q20 += ( LogTool::pl2prob(p_bq[l]) * 2.0 / 3.0 );
            ++oth_obs_q20;
            ++dp_q20;
          }
          ++v_ods[k][i];
        }
          }

          float sqrt_dp_ra = sqrt((float)dp_ra);
          float ior = (float)(oth_obs_q20 / (oth_exp_q20 + 1e-6));
          float nm1 = al_s1 == 0 ? 0 : nm_al / (float)al_s1;
          float nm0 = (dp_ra-al_s1) == 0 ? 0 : (nm_s1-nm_al) / (float)(dp_ra-al_s1);
          float w_dp_ra  = log(dp_ra+1.); //sqrt(dp_ra);
          float w_dp_q20 = log(dp_q20+1.); //sqrt(dp_q20);
          float w_al_s1  = log(al_s1+1.); //sqrt(al_s1);
          float w_ref_s1 = log(dp_ra-al_s1+1.);

          if ( gt == 1 ) { // het genotypes
        v_ab_nums[k] += (w_dp_ra * (dp_ra - al_s1 + 0.05) / (double)(dp_ra + 0.1));
        v_ab_dens[k] += w_dp_ra;

        // E(r) = 0.5(r+a) V(r) = 0.25(r+a)
        v_abz_nums[k] += w_dp_ra * (dp_ra - al_s1 - dp_ra*0.5)/sqrt(0.25 * dp_ra + 1e-3);
        v_abz_dens[k] += (w_dp_ra * w_dp_ra);

        float bqr = sqrt_dp_ra * compute_correlation( dp_ra, bq_al, bq_s1, bq_s2, al_s1, al_s1, .1 );
        float mqr = sqrt_dp_ra * compute_correlation( dp_ra, mq_al, mq_s1, mq_s2, al_s1, al_s1, .1 );
        float cyr = sqrt_dp_ra * compute_correlation_f( dp_ra, cy_al, cy_s1, cy_s2, (float)al_s1, (float)al_s1, .1 );
        float str = sqrt_dp_ra * compute_correlation( dp_ra, st_al, st_s1, st_s1, al_s1, al_s1, .1 );
        float nmr = sqrt_dp_ra * compute_correlation( dp_ra, nm_al, nm_s1, nm_s2, al_s1, al_s1, .1 );

        // Use Stouffer's method to combine the z-scores, but weighted by log of sample size
        v_bqr_nums[k] += (bqr * w_dp_ra); v_bqr_dens[k] += (w_dp_ra * w_dp_ra);
        v_mqr_nums[k] += (mqr * w_dp_ra); v_mqr_dens[k] += (w_dp_ra * w_dp_ra);
        v_cyr_nums[k] += (cyr * w_dp_ra); v_cyr_dens[k] += (w_dp_ra * w_dp_ra);
        v_str_nums[k] += (str * w_dp_ra); v_str_dens[k] += (w_dp_ra * w_dp_ra);
        v_nmr_nums[k] += (nmr * w_dp_ra); v_nmr_dens[k] += (w_dp_ra * w_dp_ra);
          }

          v_ior_nums[k] += (ior * w_dp_q20); v_ior_dens[k] += w_dp_q20;
          v_nm1_nums[k] += (nm1 * w_al_s1);  v_nm1_dens[k] += w_al_s1;
          v_nm0_nums[k] += (nm0 * w_ref_s1); v_nm0_dens[k] += w_ref_s1;
        }

        ++k;
      }
      odr->close();
      delete odr;
    }
        bcf_hdr_add_sample(odw->hdr, NULL);

        odw->write_hdr();

    bcf1_t* nv = bcf_init();

    for(size_t k=0; k < v_rids.size(); ++k) {
      bcf_clear(nv);
      nv->rid = v_rids[k];
      nv->pos = v_poss[k];
      nv->rlen = v_rlens[k];
      nv->n_sample = nfiles;

      const char* tmp_d_alleles[vn_alleles[k]];
      for(int l=0; l < vn_alleles[k]; ++l)
        tmp_d_alleles[l] = v_d_alleles[k][l].c_str();
      bcf_update_alleles(odw->hdr, nv, tmp_d_alleles, vn_alleles[k]);

      if ( !v_filts[k].empty() ) {
        int tmp_filts[v_filts[k].size()];
        for(size_t l=0; l < v_filts[k].size(); ++l) {
          tmp_filts[l] = v_filts[k][l];
        }
        bcf_update_filter(odw->hdr, nv, tmp_filts, (int32_t)v_filts[k].size());
      }

      bcf_unpack(nv, BCF_UN_ALL);

      // calculate the allele frequencies under HWE
      float MLE_HWE_AF[vn_alleles[k]];
      float MLE_HWE_GF[vn_genos[k]];
      int32_t ploidy = 2; // temporarily constant
      int32_t n = 0;
      Estimator::compute_gl_af_hwe(v_pls[k], nfiles, ploidy, vn_alleles[k], MLE_HWE_AF, MLE_HWE_GF,  n, 1e-20);

      // calculate the genotypes (diploid only)
      double gp, gp_sum, max_gp;
      int32_t best_gt;
      int32_t best_a1, best_a2;
      int32_t* pls_i;
      int32_t an = 0;
      int32_t acs[vn_alleles[k]];
      int32_t gcs[vn_genos[k]];
      float afs[vn_alleles[k]];

      memset(acs, 0, sizeof(int32_t)*vn_alleles[k]);
      memset(gcs, 0, sizeof(int32_t)*vn_genos[k]);

      for(size_t i=0; i < nfiles; ++i) {
        pls_i = &v_pls[k][ i * vn_genos[k] ];
        max_gp = gp_sum = gp = ( LogTool::pl2prob(pls_i[0]) * MLE_HWE_AF[0] * MLE_HWE_AF[0] );
        best_gt = 0; best_a1 = 0; best_a2 = 0;
        for(size_t l=1; l < vn_alleles[k]; ++l) {
          for(size_t m=0; m <= l; ++m) {
        gp = ( LogTool::pl2prob(pls_i[ l*(l+1)/2 + m]) * MLE_HWE_AF[l] * MLE_HWE_AF[m] * (l == m ? 1 : 2) );
        gp_sum += gp;
        if ( max_gp < gp ) {
          max_gp = gp;
          best_gt = l*(l+1)/2 + m; best_a1 = m; best_a2 = l;
        }
          }
        }

        double prob = 1.-max_gp/gp_sum;
        if ( prob <= 3.162278e-26 )
          prob = 3.162278e-26;
        if ( prob > 1 )
          prob = 1;

        v_gqs[k][i] = (int32_t)LogTool::prob2pl(prob);

        if ( ( best_gt > 0 ) && ( v_max_gqs[k] < v_gqs[k][i] ) )
          v_max_gqs[k] = v_gqs[k][i];

        v_gts[k][2*i]   = ((best_a1 + 1) << 1);
        v_gts[k][2*i+1] = ((best_a2 + 1) << 1);
        an += 2;
        ++acs[best_a1];
        ++acs[best_a2];
        ++gcs[best_gt];
      }

      for(size_t i=0; i < vn_alleles[k]; ++i) {
        afs[i] = acs[i]/(float)an;
      }

      bcf_update_format_int32(odw->hdr, nv, "GT", v_gts[k], nfiles * 2);
      bcf_update_format_int32(odw->hdr, nv, "GQ", v_gqs[k], nfiles );
      bcf_update_format_int32(odw->hdr, nv, "AD", v_ads[k], nfiles * vn_alleles[k]);
      bcf_update_format_int32(odw->hdr, nv, "OD", v_ods[k], nfiles );
      bcf_update_format_int32(odw->hdr, nv, "PL", v_pls[k], nfiles * vn_genos[k]);

      float avgdp = (float)v_dp_sums[k]/(float)nfiles;

      nv->qual = (float) v_max_gqs[k];
      bcf_update_info_float(odw->hdr, nv, "AVGDP", &avgdp, 1);
      bcf_update_info_int32(odw->hdr, nv, "AC", &acs[1], vn_alleles[k]-1);
      bcf_update_info_int32(odw->hdr, nv, "AN", &an, 1);
      bcf_update_info_float(odw->hdr, nv, "AF", &afs[1], vn_alleles[k]-1);
      bcf_update_info_int32(odw->hdr, nv, "GC", gcs, vn_genos[k]);
      bcf_update_info_int32(odw->hdr, nv, "GN", &nfiles, 1);

      if (n) {
        float* MLE_HWE_AF_PTR = &MLE_HWE_AF[1];
        bcf_update_info_float(odw->hdr, nv, "HWEAF", MLE_HWE_AF_PTR, vn_alleles[k]-1);
        //bcf_update_info_float(odw->hdr, nv, "HWEGF", &MLE_HWE_GF, n_genos);
      }

      // calculate the allele frequencies under HWD
      float MLE_AF[vn_alleles[k]];
      float MLE_GF[vn_genos[k]];
      n = 0;
      Estimator::compute_gl_af(v_pls[k], nfiles, ploidy, vn_alleles[k], MLE_AF, MLE_GF,  n, 1e-20);
      if (n) {
        float* MLE_AF_PTR = &MLE_AF[1];
        //bcf_update_info_float(odw->hdr, nv, "HWDAF", MLE_AF_PTR, n_alleles-1);
        bcf_update_info_float(odw->hdr, nv, "HWDGF", &MLE_GF, vn_genos[k]);
      }

      float fic = 0;
      n = 0;
      Estimator::compute_gl_fic(v_pls[k], nfiles, ploidy, MLE_HWE_AF, vn_alleles[k], MLE_GF, fic, n);
      if ( std::isnan((double)fic) ) fic = 0;
      if (n) {
        bcf_update_info_float(odw->hdr, nv, "IBC", &fic, 1);
      }

      // calculate the LRT statistics related to HWE
      float lrts;
      float logp;
      int32_t df;
      n = 0;
      Estimator::compute_hwe_lrt(v_pls[k], nfiles, ploidy, vn_alleles[k], MLE_HWE_GF, MLE_GF, n, lrts, logp, df);
      if (n) {
        if ( fic > 0 ) logp = 0-logp;
        bcf_update_info_float(odw->hdr, nv, "HWE_SLP", &logp, 1);
      }

      // add additional annotations
      v_ns_nrefs[k] -= (nfiles - gcs[0]);
      bcf_update_info_int32(odw->hdr, nv, "NS_NREF", &v_ns_nrefs[k], 1);
      v_ab_nums[k] /= (v_ab_dens[k]+1e-6); bcf_update_info_float(odw->hdr, nv, "ABE",  &v_ab_nums[k], 1);
      v_abz_nums[k] /= sqrt(v_abz_dens[k]+1e-6); bcf_update_info_float(odw->hdr, nv, "ABZ",  &v_abz_nums[k], 1);
      v_bqr_nums[k] /= sqrt(v_bqr_dens[k]+1e-6); bcf_update_info_float(odw->hdr, nv, "BQZ", &v_bqr_nums[k], 1);
      v_mqr_nums[k] /= sqrt(v_mqr_dens[k]+1e-6); bcf_update_info_float(odw->hdr, nv, "MQZ", &v_mqr_nums[k], 1);
      v_cyr_nums[k] /= sqrt(v_cyr_dens[k]+1e-6); bcf_update_info_float(odw->hdr, nv, "CYZ", &v_cyr_nums[k], 1);
      v_str_nums[k] /= sqrt(v_str_dens[k]+1e-6); bcf_update_info_float(odw->hdr, nv, "STZ", &v_str_nums[k], 1);
      v_nmr_nums[k] /= sqrt(v_nmr_dens[k]+1e-6); bcf_update_info_float(odw->hdr, nv, "NMZ", &v_nmr_nums[k], 1);
      v_ior_nums[k] = log(v_ior_nums[k]/v_ior_dens[k]+1e-6)/log(10.); bcf_update_info_float(odw->hdr, nv, "IOR", &v_ior_nums[k], 1);
      v_nm1_nums[k] /= (v_nm1_dens[k]+1e-6); bcf_update_info_float(odw->hdr, nv, "NM1", &v_nm1_nums[k], 1);
      v_nm0_nums[k] /= (v_nm0_dens[k]+1e-6); bcf_update_info_float(odw->hdr, nv, "NM0", &v_nm0_nums[k], 1);

      //fprintf(stderr,"AC = %f, AN = %f, NS_NREF = %f, AB = %f, BQR = %f, MQR = %f, CYR = %f, STR = %f, NMR = %f, IOR = %f, NMA = %f\n", acs[1], an, ns_nref, ab_num, bqr_num, mqr_num, cyr_num, str_num, nmr_num, ior_num, nma_num);

      odw->write(nv);
    }

        odw->close();
    };

    void print_options()
    {
        if (!print) return;

        std::clog << "paste_and_comput_features v" << version << "\n\n";
        print_ifiles("options:     input VCF file        ", input_vcf_files);
        std::clog << "         [o] output VCF file       " << output_vcf_file << "\n";
        std::clog << "\n";
    }

    void print_stats()
    {
        if (!print) return;

        std::clog << "\n";
        std::cerr << "stats: Total number of files pasted  " << input_vcf_files.size() << "\n";
        std::clog << "\n";
    };

    ~Igor() {};

    private:
};

}

bool paste_and_compute_features_sequential(int argc, char ** argv)
{
    Igor igor(argc, argv);
    igor.print_options();
    igor.initialize();
    igor.paste_and_compute_features_sequential();
    igor.print_stats();
    return igor.print;
}