File: vtkQuadraticHexahedron.h

package info (click to toggle)
vtk 5.0.2-4
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 51,080 kB
  • ctags: 67,442
  • sloc: cpp: 522,627; ansic: 221,292; tcl: 43,377; python: 14,072; perl: 3,102; java: 1,436; yacc: 1,033; sh: 469; lex: 248; makefile: 181; asm: 154
file content (124 lines) | stat: -rw-r--r-- 4,916 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    $RCSfile: vtkQuadraticHexahedron.h,v $

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
// .NAME vtkQuadraticHexahedron - cell represents a parabolic, 20-node isoparametric hexahedron
// .SECTION Description
// vtkQuadraticHexahedron is a concrete implementation of vtkNonLinearCell to
// represent a three-dimensional, 20-node isoparametric parabolic
// hexahedron. The interpolation is the standard finite element, quadratic
// isoparametric shape function. The cell includes a mid-edge node. The
// ordering of the twenty points defining the cell is point ids (0-7,8-19)
// where point ids 0-7 are the eight corner vertices of the cube; followed by
// twelve midedge nodes (8-19). Note that these midedge nodes correspond lie
// on the edges defined by (0,1), (1,2), (2,3), (3,0), (4,5), (5,6), (6,7),
// (7,4), (0,4), (1,5), (2,6), (3,7).

// .SECTION See Also
// vtkQuadraticEdge vtkQuadraticTriangle vtkQuadraticTetra
// vtkQuadraticQuad vtkQuadraticPyramid vtkQuadraticWedge

#ifndef __vtkQuadraticHexahedron_h
#define __vtkQuadraticHexahedron_h

#include "vtkNonLinearCell.h"

class vtkPolyData;
class vtkQuadraticEdge;
class vtkQuadraticQuad;
class vtkHexahedron;
class vtkDoubleArray;

class VTK_FILTERING_EXPORT vtkQuadraticHexahedron : public vtkNonLinearCell
{
public:
  static vtkQuadraticHexahedron *New();
  vtkTypeRevisionMacro(vtkQuadraticHexahedron,vtkNonLinearCell);
  void PrintSelf(ostream& os, vtkIndent indent);

  // Description:
  // Implement the vtkCell API. See the vtkCell API for descriptions 
  // of these methods.
  int GetCellType() {return VTK_QUADRATIC_HEXAHEDRON;}
  int GetCellDimension() {return 3;}
  int GetNumberOfEdges() {return 12;}
  int GetNumberOfFaces() {return 6;}
  vtkCell *GetEdge(int);
  vtkCell *GetFace(int);

  int CellBoundary(int subId, double pcoords[3], vtkIdList *pts);
  void Contour(double value, vtkDataArray *cellScalars, 
               vtkPointLocator *locator, vtkCellArray *verts, 
               vtkCellArray *lines, vtkCellArray *polys, 
               vtkPointData *inPd, vtkPointData *outPd,
               vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd);
  int EvaluatePosition(double x[3], double* closestPoint,
                       int& subId, double pcoords[3], 
                       double& dist2, double *weights);
  void EvaluateLocation(int& subId, double pcoords[3], double x[3],
                        double *weights);
  int Triangulate(int index, vtkIdList *ptIds, vtkPoints *pts);
  void Derivatives(int subId, double pcoords[3], double *values, 
                   int dim, double *derivs);
  virtual double *GetParametricCoords();

  // Description:
  // Clip this quadratic hexahedron using scalar value provided. Like 
  // contouring, except that it cuts the hex to produce linear 
  // tetrahedron.
  void Clip(double value, vtkDataArray *cellScalars, 
            vtkPointLocator *locator, vtkCellArray *tetras,
            vtkPointData *inPd, vtkPointData *outPd,
            vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd,
            int insideOut);

  // Description:
  // Line-edge intersection. Intersection has to occur within [0,1] parametric
  // coordinates and with specified tolerance.
  int IntersectWithLine(double p1[3], double p2[3], double tol, double& t,
                        double x[3], double pcoords[3], int& subId);

  
  // Description:
  // Quadratic hexahedron specific methods. 
  static void InterpolationFunctions(double pcoords[3], double weights[20]);
  static void InterpolationDerivs(double pcoords[3], double derivs[60]);

  // Description:
  // Given parametric coordinates compute inverse Jacobian transformation
  // matrix. Returns 9 elements of 3x3 inverse Jacobian plus interpolation
  // function derivatives.
  void JacobianInverse(double pcoords[3], double **inverse, double derivs[60]);

protected:
  vtkQuadraticHexahedron();
  ~vtkQuadraticHexahedron();

  vtkQuadraticEdge *Edge;
  vtkQuadraticQuad *Face;
  vtkHexahedron    *Hex;
  vtkPointData     *PointData;
  vtkCellData      *CellData;
  vtkDoubleArray   *CellScalars;
  vtkDoubleArray   *Scalars;
  
  void Subdivide(vtkPointData *inPd, vtkCellData *inCd, vtkIdType cellId, vtkDataArray *cellScalars);

private:
  vtkQuadraticHexahedron(const vtkQuadraticHexahedron&);  // Not implemented.
  void operator=(const vtkQuadraticHexahedron&);  // Not implemented.
};

#endif