File: vtkGreedyTerrainDecimation.cxx

package info (click to toggle)
vtk 5.0.2-4
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 51,080 kB
  • ctags: 67,442
  • sloc: cpp: 522,627; ansic: 221,292; tcl: 43,377; python: 14,072; perl: 3,102; java: 1,436; yacc: 1,033; sh: 469; lex: 248; makefile: 181; asm: 154
file content (1259 lines) | stat: -rwxr-xr-x 36,605 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    $RCSfile: vtkGreedyTerrainDecimation.cxx,v $

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
#include "vtkGreedyTerrainDecimation.h"
#include "vtkInformation.h"
#include "vtkInformationVector.h"
#include "vtkObjectFactory.h"
#include "vtkPriorityQueue.h"
#include "vtkImageData.h"
#include "vtkPolyData.h"
#include "vtkPointData.h"
#include "vtkPoints.h"
#include "vtkCellArray.h"
#include "vtkTriangle.h"
#include "vtkDoubleArray.h"
#include "vtkFloatArray.h"
#include "vtkMath.h"

#include <vtkstd/vector>

vtkCxxRevisionMacro(vtkGreedyTerrainDecimation, "$Revision: 1.22 $");
vtkStandardNewMacro(vtkGreedyTerrainDecimation);

// Define some constants describing vertices
//
#define VTK_VERTEX_NO_TRIANGLE -1
#define VTK_VERTEX_INSERTED    -2

#define VTK_IN_TRIANGLE   0
#define VTK_INTERIOR_EDGE 1
#define VTK_BOUNDARY_EDGE 2

//Supporting classes for points
class vtkTerrainInfo
{
public:
  vtkTerrainInfo():TriangleId(VTK_VERTEX_NO_TRIANGLE) {}
  vtkIdType TriangleId;
};

//PIMPL STL encapsulation
//
// Maps input point ids to owning mesh triangle
class vtkGreedyTerrainDecimationTerrainInfoType : public vtkstd::vector<vtkTerrainInfo> 
{
public:
  typedef vtkstd::vector<vtkTerrainInfo> Superclass;
  typedef Superclass::size_type size_type;
  vtkGreedyTerrainDecimationTerrainInfoType(size_type n, const vtkTerrainInfo& value):
    vtkstd::vector<vtkTerrainInfo>(n,value) {}
};

// Maps mesh point id to input point id
class vtkGreedyTerrainDecimationPointInfoType : public vtkstd::vector<vtkIdType> {};


// Begin vtkGreedyTerrainDecimation class implementation-----------------------------------------
//
vtkGreedyTerrainDecimation::vtkGreedyTerrainDecimation()
{
  this->ErrorMeasure = VTK_ERROR_SPECIFIED_REDUCTION;
  this->NumberOfTriangles = 1000;
  this->Reduction = 0.90;
  this->AbsoluteError = 1;
  this->RelativeError = 0.01;
  this->BoundaryVertexDeletion = 1;

  this->ComputeNormals = 0;
  this->Normals = 0;
}

vtkGreedyTerrainDecimation::~vtkGreedyTerrainDecimation()
{
}

inline void vtkGreedyTerrainDecimation::GetTerrainPoint(int i, int j, double x[3])
{
  x[0] = this->Origin[0] + i*this->Spacing[0];
  x[1] = this->Origin[1] + j*this->Spacing[1];
}

inline void vtkGreedyTerrainDecimation::ComputeImageCoordinates(vtkIdType inputPtId, int ij[2])
{
  ij[0] = inputPtId % this->Dimensions[0];
  ij[1] = inputPtId / this->Dimensions[0];
}

inline vtkIdType vtkGreedyTerrainDecimation::InsertNextPoint(vtkIdType inputPtId, 
                                                             double x[3])
{
  if ( (this->CurrentPointId+1) >= (vtkIdType)this->PointInfo->size() )
    {
    this->PointInfo->resize(2*this->PointInfo->size());
    }

  double *ptr = this->Points->WritePointer(3*this->CurrentPointId,3);
  *ptr++ = *x++;
  *ptr++ = *x++;
  *ptr   = *x;

  this->OutputPD->CopyData(this->InputPD,inputPtId,this->CurrentPointId);
  (*this->PointInfo)[this->CurrentPointId] = inputPtId;

  return this->CurrentPointId++;
}

inline double *vtkGreedyTerrainDecimation::GetPoint(vtkIdType id)
{
  return this->Points->GetPointer(3*id);
}

inline void vtkGreedyTerrainDecimation::GetPoint(vtkIdType id, double x[3])
{
  double *ptr = this->Points->GetPointer(3*id);
  x[0] = *ptr++;
  x[1] = *ptr++;
  x[2] = *ptr;
}

void vtkGreedyTerrainDecimation::EstimateOutputSize(const vtkIdType numInputPts,
                                                    vtkIdType &numPts, vtkIdType &numTris)
{
  switch (this->ErrorMeasure)
    {
    case VTK_ERROR_NUMBER_OF_TRIANGLES:
      numTris = this->NumberOfTriangles;
      break;
    case VTK_ERROR_SPECIFIED_REDUCTION:
      numTris = static_cast<int>(2*numInputPts*(1.0-this->Reduction));
      break;
    default:
      numTris = numInputPts;
    }

  numPts = numTris/2 + 1;
  numPts = (numPts < 4 ? 4 : numPts); //insure enough storage for initial four corner points
  return;
}

int vtkGreedyTerrainDecimation::SatisfiesErrorMeasure(double error)
{
  switch (this->ErrorMeasure)
    {
    case VTK_ERROR_NUMBER_OF_TRIANGLES:
      if ( this->Mesh->GetNumberOfPolys() >= this->NumberOfTriangles ) return 1;
      break;

    case VTK_ERROR_SPECIFIED_REDUCTION:
      {
      double reduction = (double)this->Mesh->GetNumberOfPolys()/this->MaximumNumberOfTriangles;
      if ( (1.0 - reduction) <= this->Reduction ) return 1;
      }
      break;

    case VTK_ERROR_ABSOLUTE:
      if ( error <= this->AbsoluteError ) return 1;
      break;

    case VTK_ERROR_RELATIVE:
      if ( (error/this->Length) <= this->RelativeError ) return 1;
      break;
    }

  return 0;
}

//Update all triangles connected to this mesh point
void vtkGreedyTerrainDecimation::UpdateTriangles(vtkIdType ptId)
{
  unsigned short ncells;
  vtkIdType *cells, npts, *pts;
  
  this->Mesh->GetPointCells(ptId,ncells,cells);
  for (unsigned short i=0; i<ncells; i++)
    {
    this->Mesh->GetCellPoints(cells[i], npts, pts);
    this->UpdateTriangle(cells[i], (*this->PointInfo)[pts[0]], 
                         (*this->PointInfo)[pts[1]], (*this->PointInfo)[pts[2]]);
    }
}

//Update all points as to which triangle they lie in. Basically a scanline algorithm.
void vtkGreedyTerrainDecimation::UpdateTriangle(vtkIdType triId, 
                                                vtkIdType p1, vtkIdType p2, vtkIdType p3)
{
  // Scan convert triangle / update points as to which triangle contains each point
  int ij1[2], ij2[2], ij3[2];
  this->ComputeImageCoordinates(p1, ij1);
  this->ComputeImageCoordinates(p2, ij2);
  this->ComputeImageCoordinates(p3, ij3);
  
  double h[4]; //extra entry added for interpolated value
  h[0] = (double) this->Heights->GetTuple1(p1);
  h[1] = (double) this->Heights->GetTuple1(p2);
  h[2] = (double) this->Heights->GetTuple1(p3);

  this->UpdateTriangle(triId, ij1, ij2, ij3, h);
}

void vtkGreedyTerrainDecimation::InsertBoundaryVertices()
{
  int i, j;
  vtkIdType inputPtId, offset;

  // Insert vertices around boundary of image
  // Note that the four corner vertices are already inserted.
  // Along x-axis at y=0.
  for (i=1; i<(this->Dimensions[0]-1); i++)
    {
    inputPtId = i;
    this->AddPointToTriangulation(inputPtId);
    }

  // Along x-axis at y=dim[1].
  offset = this->Dimensions[0]*(this->Dimensions[1]-1);
  for (i=1; i<(this->Dimensions[0]-1); i++)
    {
    inputPtId = offset + i;
    this->AddPointToTriangulation(inputPtId);
    }

  // Along y-axis at x=0.
  for (j=1; j<(this->Dimensions[1]-1); j++)
    {
    inputPtId = j*this->Dimensions[0];
    this->AddPointToTriangulation(inputPtId);
   }

  // Along y-axis at x=dims[0].
  offset = this->Dimensions[0]-1;
  for (j=1; j<(this->Dimensions[1]-1); j++)
    {
    inputPtId = offset + j*this->Dimensions[0];
    this->AddPointToTriangulation(inputPtId);
    }
}

// Determine whether point x is inside of circumcircle of triangle
// defined by points (x1, x2, x3). Returns non-zero if inside circle.
// (Note that z-component is ignored.)
int vtkGreedyTerrainDecimation::InCircle (double x[3], double x1[3], double x2[3], 
                                          double x3[3])
{
  double radius2, center[2], dist2;

  radius2 = vtkTriangle::Circumcircle(x1,x2,x3,center);

  // check if inside/outside circumcircle
  dist2 = (x[0]-center[0]) * (x[0]-center[0]) + 
          (x[1]-center[1]) * (x[1]-center[1]);

  if ( dist2 < (0.999999999999*radius2) )
    {
    return 1;
    }
  else
    {
    return 0;
    }
}

#define VTK_DEL2D_TOLERANCE 1.0e-014

// Recursive method to locate triangle containing point. Starts with arbitrary
// triangle (tri) and "walks" towards it. Influenced by some of Guibas and 
// Stolfi's work. Returns id of enclosing triangle, or -1 if no triangle
// found. Also, the array nei[3] is used to communicate info about points
// that lie on triangle edges: nei[0] is neighboring triangle id, and nei[1]
// and nei[2] are the vertices defining the edge.
vtkIdType vtkGreedyTerrainDecimation::FindTriangle(double x[3], vtkIdType ptIds[3],
                                                   vtkIdType tri, double tol,
                                                   vtkIdType nei[3], vtkIdList *neighbors,
                                                   int& status)
{
  int i, j, ir, ic, inside, i2, i3;
  vtkIdType *pts, npts, newNei;
  double p[3][3], n[2], vp[2], vx[2], dp, minProj;

  // get local triangle info
  this->Mesh->GetCellPoints(tri,npts,pts);
  for (i=0; i<3; i++) 
    {
    ptIds[i] = pts[i];
    this->GetPoint(ptIds[i], p[i]);
    }

  // Randomization (of find edge neighbors) avoids walking in 
  // circles in certain weird cases
  srand(tri);
  ir = rand() % 3;
  
  // evaluate in/out of each edge
  for (inside=1, minProj=VTK_DEL2D_TOLERANCE, ic=0; ic<3; ic++)
    {
    i  = (ir+ic) % 3;
    i2 = (i+1) % 3;
    i3 = (i+2) % 3;

    // create a 2D edge normal to define a "half-space"; evaluate points (i.e.,
    // candiate point and other triangle vertex not on this edge).
    n[0] = -(p[i2][1] - p[i][1]);
    n[1] = p[i2][0] - p[i][0];
    vtkMath::Normalize2D(n);

    // compute local vectors
    for (j=0; j<2; j++)
      {
      vp[j] = p[i3][j] - p[i][j];
      vx[j] = x[j] - p[i][j];
      }

    //check for duplicate point
    vtkMath::Normalize2D(vp);
    if ( vtkMath::Normalize2D(vx) <= tol ) 
      {
      vtkErrorMacro("Duplicate point");
      return -1;
      }

    // see if two points are in opposite half spaces
    dp = vtkMath::Dot2D(n,vx) * (vtkMath::Dot2D(n,vp) < 0 ? -1.0 : 1.0);
    if ( dp < VTK_DEL2D_TOLERANCE )
      {
      if ( dp < minProj ) //track edge most orthogonal to point direction
        {
        inside = 0;
        nei[1] = ptIds[i];
        nei[2] = ptIds[i2];
        minProj = dp;
        }
      }//outside this edge
    }//for each edge

  if ( inside ) // all edges have tested positive
    {
    nei[0] = (-1);
    status = VTK_IN_TRIANGLE;
    return tri;
    }

  else if ( !inside && (fabs(minProj) < VTK_DEL2D_TOLERANCE) ) // on edge
    {
    this->Mesh->GetCellEdgeNeighbors(tri,nei[1],nei[2],neighbors);
    if ( neighbors->GetNumberOfIds() < 1 )
      {
      nei[0] = (-1);
      status = VTK_BOUNDARY_EDGE;
      }
    else 
      {
      nei[0] = neighbors->GetId(0);
      status = VTK_INTERIOR_EDGE;
      }
    return tri;
    }

  else //walk towards point
    {
    this->Mesh->GetCellEdgeNeighbors(tri,nei[1],nei[2],neighbors);
    if ( (newNei=neighbors->GetId(0)) == nei[0] )
      {
      vtkErrorMacro("Degeneracy");
      return -1;
      }
    else
      {
      nei[0] = tri;
      return this->FindTriangle(x,ptIds,newNei,tol,nei,neighbors,status);
      }
    }
}

#undef VTK_DEL2D_TOLERANCE

// Recursive method checks whether edge is Delaunay, and if not, swaps edge.
// Continues until all edges are Delaunay. Points p1 and p2 form the edge in
// question; x is the coordinates of the inserted point; tri is the current
// triangle id.
void vtkGreedyTerrainDecimation::CheckEdge(vtkIdType ptId, double x[3], vtkIdType p1,
                                           vtkIdType p2, vtkIdType tri)
{
  int i;
  vtkIdType *pts, npts, numNei, nei, p3;
  double x1[3], x2[3], x3[3];
  vtkIdList *neighbors;
  vtkIdType swapTri[3];

  this->GetPoint(p1,x1);
  this->GetPoint(p2,x2);

  neighbors = vtkIdList::New();
  neighbors->Allocate(2);

  this->Mesh->GetCellEdgeNeighbors(tri,p1,p2,neighbors);
  numNei = neighbors->GetNumberOfIds();

  if ( numNei > 0 ) //i.e., not a boundary edge
    {
    // get neighbor info including opposite point
    nei = neighbors->GetId(0);
    this->Mesh->GetCellPoints(nei, npts, pts);
    for (i=0; i<2; i++)
      {
      if ( pts[i] != p1 && pts[i] != p2 )
        {
        break;
        }
      }
    p3 = pts[i];
    this->GetPoint(p3,x3);

    // see whether point is in circumcircle
    if ( this->InCircle (x3, x, x1, x2) )
      {// swap diagonal
      this->Mesh->RemoveReferenceToCell(p1,tri);
      this->Mesh->RemoveReferenceToCell(p2,nei);
      this->Mesh->ResizeCellList(ptId,1);
      this->Mesh->AddReferenceToCell(ptId,nei);
      this->Mesh->ResizeCellList(p3,1);
      this->Mesh->AddReferenceToCell(p3,tri);

      swapTri[0] = ptId; swapTri[1] = p3; swapTri[2] = p2;
      this->Mesh->ReplaceCell(tri,3,swapTri);

      swapTri[0] = ptId; swapTri[1] = p1; swapTri[2] = p3;
      this->Mesh->ReplaceCell(nei,3,swapTri);

      // two new edges become suspect
      this->CheckEdge(ptId, x, p3, p2, tri);
      this->CheckEdge(ptId, x, p1, p3, nei);

      }//in circle
    }//interior edge

  neighbors->Delete();
}

vtkIdType vtkGreedyTerrainDecimation::AddPointToTriangulation(vtkIdType inputPtId)
{
  vtkIdType ptId, nei[3], tri[4];
  vtkIdType nodes[4][3], pts[3], numNeiPts, *neiPts;
  vtkIdType i, p1=0, p2=0;
  int ij[2];
  double x[3];
  int status;
  
  //Make sure the point has not been previously inserted
  if ( (*this->TerrainInfo)[inputPtId].TriangleId == VTK_VERTEX_INSERTED )
    {
    return -1;
    }

  //Start off by determining the image coordinates and the position
  this->ComputeImageCoordinates(inputPtId, ij);
  this->GetTerrainPoint(ij[0], ij[1], x);
  x[2] = (double) this->Heights->GetTuple1(inputPtId);

  //Seed the search
  nei[0] = (*this->TerrainInfo)[inputPtId].TriangleId;
  tri[0] = (nei[0] < 0 ? 0 : nei[0]);

  tri[0] = this->FindTriangle(x,pts,tri[0],this->Tolerance,nei,this->Neighbors,status);
  if ( tri[0] >= 0 ) //found a triangle
    {
    // Insert the point into the output
    ptId = this->InsertNextPoint(inputPtId, x);

    if (this->Normals)
      {
      float n[3];
      this->ComputePointNormal(ij[0], ij[1], n);
      this->Normals->InsertNextTuple(n);
      }
    if ( status == VTK_IN_TRIANGLE ) //in triangle
      {
      //delete this triangle; create three new triangles
      //first triangle is replaced with one of the new ones
      nodes[0][0] = ptId; nodes[0][1] = pts[0]; nodes[0][2] = pts[1];
      this->Mesh->RemoveReferenceToCell(pts[2], tri[0]);
      this->Mesh->ReplaceCell(tri[0], 3, nodes[0]);
      this->Mesh->InsertNextLinkedPoint(3);
      this->Mesh->AddReferenceToCell(ptId,tri[0]);

      //create two new triangles
      nodes[1][0] = ptId; nodes[1][1] = pts[1]; nodes[1][2] = pts[2];
      tri[1] = this->Mesh->InsertNextLinkedCell(VTK_TRIANGLE, 3, nodes[1]);

      nodes[2][0] = ptId; nodes[2][1] = pts[2]; nodes[2][2] = pts[0];
      tri[2] = this->Mesh->InsertNextLinkedCell(VTK_TRIANGLE, 3, nodes[2]);

      // Check edge neighbors for Delaunay criterion. If not satisfied, flip
      // edge diagonal. (This is done recursively.)
      this->CheckEdge(ptId, x, pts[0], pts[1], tri[0]);
      this->CheckEdge(ptId, x, pts[1], pts[2], tri[1]);
      this->CheckEdge(ptId, x, pts[2], pts[0], tri[2]);
      }

    else if ( status == VTK_INTERIOR_EDGE ) // on interior triangle edge; has a neighbor
      {
      //update cell list
      this->Mesh->GetCellPoints(nei[0],numNeiPts,neiPts);
      for (i=0; i<3; i++)
        {
        if ( neiPts[i] != nei[1] && neiPts[i] != nei[2] ) 
          {
          p1 = neiPts[i];
          }
        if ( pts[i] != nei[1] && pts[i] != nei[2] ) 
          {
          p2 = pts[i];
          }
        }
      this->Mesh->ResizeCellList(p1,1);
      this->Mesh->ResizeCellList(p2,1);

      //replace two triangles
      this->Mesh->RemoveReferenceToCell(nei[2],tri[0]);
      this->Mesh->RemoveReferenceToCell(nei[2],nei[0]);

      nodes[0][0] = ptId; nodes[0][1] = p2; nodes[0][2] = nei[1];
      this->Mesh->ReplaceCell(tri[0], 3, nodes[0]);

      nodes[1][0] = ptId; nodes[1][1] = nei[1]; nodes[1][2] = p1;
      this->Mesh->ReplaceCell(nei[0], 3, nodes[1]);

      this->Mesh->InsertNextLinkedPoint(4);
      this->Mesh->AddReferenceToCell(ptId,tri[0]);
      this->Mesh->AddReferenceToCell(ptId,nei[0]);

      tri[1] = nei[0];

      //create two new triangles
      nodes[2][0] = ptId; nodes[2][1] = nei[2]; nodes[2][2] = p2;
      tri[2] = this->Mesh->InsertNextLinkedCell(VTK_TRIANGLE, 3, nodes[2]);

      nodes[3][0] = ptId; nodes[3][1] = p1; nodes[3][2] = nei[2];
      tri[3] = this->Mesh->InsertNextLinkedCell(VTK_TRIANGLE, 3, nodes[3]);

      // Check edge neighbors for Delaunay criterion.
      for ( i=0; i<4; i++ )
        {
        this->CheckEdge (ptId, x, nodes[i][1], nodes[i][2], tri[i]);
        }
      }

    else //if ( status == VTK_BOUNDARY_EDGE ) // on boundary triangle edge; no neighbor
      {
      //update cell list
      for (i=0; i<3; i++)
        {
        if ( pts[i] != nei[1] && pts[i] != nei[2] ) 
          {
          p1 = pts[i];
          }
        }
      this->Mesh->ResizeCellList(p1,1);

      //replace one triangle
      this->Mesh->RemoveReferenceToCell(nei[2],tri[0]);

      nodes[0][0] = ptId; nodes[0][1] = p1; nodes[0][2] = nei[1];
      this->Mesh->ReplaceCell(tri[0], 3, nodes[0]);

      this->Mesh->InsertNextLinkedPoint(2);
      this->Mesh->AddReferenceToCell(ptId,tri[0]);

      //create one new triangles
      nodes[1][0] = ptId; nodes[1][1] = nei[2]; nodes[1][2] = p1;
      tri[1] = this->Mesh->InsertNextLinkedCell(VTK_TRIANGLE, 3, nodes[1]);

      // Check edge neighbors for Delaunay criterion.
      for ( i=0; i<2; i++ )
        {
        this->CheckEdge (ptId, x, nodes[i][1], nodes[i][2], tri[i]);
        }
      }
    
    //Indicate that it is now inserted and reinsert errors
    (*this->TerrainInfo)[inputPtId].TriangleId = VTK_VERTEX_INSERTED;
    this->UpdateTriangles(ptId); 
    
    }//if triangle containing point found

  return 0;
}

void vtkGreedyTerrainDecimation::ComputePointNormal(int i, int j, float n[3])
{
  vtkDataArray* scalars;
  double x0, x1, y0, y1, dx, dy;
  float vx[3], vy[3];

  scalars = this->InputPD->GetScalars();

  dx = dy = 0;
  // X
  if (i > 0)
    {
    x0 = scalars->GetTuple1(j*this->Dimensions[0] + i - 1);
    dx += this->Spacing[0];
    }
  else
    {
    x0 = scalars->GetTuple1(j*this->Dimensions[0] + i);
    }
  if (i < this->Dimensions[0]-1)
    {
    x1 = scalars->GetTuple1(j*this->Dimensions[0] + i + 1);
    dx += this->Spacing[0];
    }
  else
    {
    x1 = scalars->GetTuple1(j*this->Dimensions[0] + i);
    }
  // Y
  if (j > 0)
    {
    y0 = scalars->GetTuple1((j-1)*this->Dimensions[0] + i);
    dy += this->Spacing[1];
    }
  else
    {
    y0 = scalars->GetTuple1(j*this->Dimensions[0] + i);
    }
  if (j < this->Dimensions[1]-1)
    {
    y1 = scalars->GetTuple1((j+1)*this->Dimensions[0] + i);
    dy += this->Spacing[1];
    }
  else
    {
    y1 = scalars->GetTuple1(j*this->Dimensions[0] + i);
    }

  if (dx == 0.0 || dy == 0.0)
    {
    // This would only happen if the input was not an XY image.
    vtkErrorMacro("Could not compute normal.");
    return;
    }
  vx[0] = (float)(dx);
  vx[1] = 0.0;
  vx[2] = (float)(x1-x0);
  vy[0] = 0.0;
  vy[1] = (float)(dy);
  vy[2] = (float)(y1-y0);
  vtkMath::Cross(vx, vy, n);
  vtkMath::Normalize(n);
}

int vtkGreedyTerrainDecimation::RequestData(
  vtkInformation *vtkNotUsed(request),
  vtkInformationVector **inputVector,
  vtkInformationVector *outputVector)
{
  // get the info objects
  vtkInformation *inInfo = inputVector[0]->GetInformationObject(0);
  vtkInformation *outInfo = outputVector->GetInformationObject(0);

  // get the input and ouptut
  vtkImageData *input = vtkImageData::SafeDownCast(
    inInfo->Get(vtkDataObject::DATA_OBJECT()));
  vtkPolyData *output = vtkPolyData::SafeDownCast(
    outInfo->Get(vtkDataObject::DATA_OBJECT()));

  vtkIdType numInputPts=input->GetNumberOfPoints(), numPts, numTris;
  vtkIdType inputPtId;
  double error, bounds[6], center[3];
  vtkCellArray *triangles;
  this->Mesh = output;
  this->InputPD = input->GetPointData();
  this->OutputPD = this->Mesh->GetPointData();

  // Check input and initialize the algorithm.
  //
  vtkDebugMacro(<<"Decimating terrain...");

  if ( input->GetDataDimension() != 2 )
    {
    vtkWarningMacro(<<"This class treats 2D height fields only");
    return 1;
    }
  if ( (this->Heights = this->InputPD->GetScalars()) == NULL )
    {
    vtkWarningMacro(<<"This class requires height scalars");
    return 1;
    }

  input->GetBounds(bounds);
  input->GetCenter(center);
  input->GetDimensions(this->Dimensions);
  double *origin = input->GetOrigin();
  double *spacing = input->GetSpacing();
  for (int ii=0; ii<3; ii++)
    {
    this->Origin[ii] = (double)origin[ii];
    this->Spacing[ii] = (double)spacing[ii];
    }
  this->Length = input->GetLength();
  this->MaximumNumberOfTriangles = 2 * (this->Dimensions[0]-1) * (this->Dimensions[1]-1);
  this->NumberOfTriangles = (this->NumberOfTriangles < this->MaximumNumberOfTriangles ?
                             this->NumberOfTriangles : this->MaximumNumberOfTriangles);
  
  // Points within this tolerance are considered coincident...should not happen
  this->Tolerance = 0.01 * this->Spacing[0];

  // Scratch data structures
  this->Neighbors = vtkIdList::New(); this->Neighbors->Allocate(2);
  
  // Top element of VTK's priority queue returns the minimum error value. Since we want the
  // maximum error, we use 1/error relationship to insert errors.
  this->TerrainError = vtkPriorityQueue::New();
  this->TerrainError->Allocate(numInputPts, (vtkIdType)((double)0.25*numInputPts));
  
  // Initialize the triangle mesh data structures. Double precision point coordinates
  // are required because of the numerical requirements on the Delaunay algorithm.
  //
  this->EstimateOutputSize(numInputPts, numPts, numTris);

  vtkPoints *newPts = vtkPoints::New();
  newPts->SetDataTypeToDouble();
  newPts->Allocate(numPts);
  this->Points = static_cast<vtkDoubleArray *>(newPts->GetData());
  
  // initailize the normals
  if (this->ComputeNormals)
    {
    this->Normals = vtkFloatArray::New();
    this->Normals->SetNumberOfComponents(3);
    this->Normals->Allocate(numPts*3);
    this->Normals->SetName("Normals");
    }  
  
  // Supplemental arrays used to accelerate the algorithm.
  // TerrainInfo contains the "containing" triangle for each point. PointInfo maps the
  // triangle mesh point id to the input image point id.
  this->TerrainInfo = new vtkGreedyTerrainDecimationTerrainInfoType(numInputPts,vtkTerrainInfo());

  this->PointInfo = new vtkGreedyTerrainDecimationPointInfoType;
  this->PointInfo->resize(numPts);

  // Setup the point attributes
  this->OutputPD->CopyAllocate(this->InputPD,numPts);

  // Begin the algorithm proper. The image is initially triangulated with two triangles whose
  // four vertices are located at the corners of the input image.
  //
  newPts->Allocate(numPts);

  inputPtId = 0;
  newPts->InsertPoint(0, bounds[0],bounds[2], 
                      (double)this->Heights->GetTuple1(inputPtId)); //ptId=0
  this->OutputPD->CopyData(this->InputPD,inputPtId,0);
  (*this->PointInfo)[0] = inputPtId;
  
  inputPtId = this->Dimensions[0] - 1;
  newPts->InsertPoint(1, bounds[1],bounds[2],
                      (double)this->Heights->GetTuple1(inputPtId)); //ptId=1
  this->OutputPD->CopyData(this->InputPD,inputPtId,1);
  (*this->PointInfo)[1] = inputPtId;

  inputPtId = this->Dimensions[0]*this->Dimensions[1] - 1;
  newPts->InsertPoint(2, bounds[1],bounds[3], 
                      (double)this->Heights->GetTuple1(inputPtId)); //ptId=2
  this->OutputPD->CopyData(this->InputPD,inputPtId,2);
  (*this->PointInfo)[2] = inputPtId;

  inputPtId = this->Dimensions[0]*(this->Dimensions[1]-1);
  newPts->InsertPoint(3, bounds[0],bounds[3], 
                      (double)this->Heights->GetTuple1(inputPtId)); //ptId=3
  this->OutputPD->CopyData(this->InputPD,inputPtId,3);
  (*this->PointInfo)[3] = inputPtId;
  this->CurrentPointId = 4;

  // Handle normals of the four corners.
  if (this->Normals)
    {
    float n[3];
    this->ComputePointNormal(0, 0, n);
    this->Normals->InsertNextTuple(n);
    this->ComputePointNormal(this->Dimensions[0]-1, 0, n);
    this->Normals->InsertNextTuple(n);
    this->ComputePointNormal(this->Dimensions[0]-1, this->Dimensions[1]-1, n);
    this->Normals->InsertNextTuple(n);
    this->ComputePointNormal(0, this->Dimensions[1]-1, n);
    this->Normals->InsertNextTuple(n);
    }
    
  // Insert initial triangles into output mesh
  triangles = vtkCellArray::New();
  triangles->Allocate(numTris,3);

  triangles->InsertNextCell(3);
  triangles->InsertCellPoint(0); triangles->InsertCellPoint(1); triangles->InsertCellPoint(3);

  triangles->InsertNextCell(3);
  triangles->InsertCellPoint(1); triangles->InsertCellPoint(2); triangles->InsertCellPoint(3);

  // Construct the topological hierarchy for the output mesh. The alternative BuildLinks(num)
  // call reallocates the links from the points to the using triangles.
  this->Mesh->SetPoints(newPts);
  this->Mesh->SetPolys(triangles);
  this->Mesh->BuildLinks(numPts); //build cell structure; give it initial size

  // Update all (two) triangles connected to this mesh point. The single point
  // in each triangle with maximum error are inserted into the error queue.
  //
  this->UpdateTriangles(3); 

  // If boundary vertex deletion is not allowed, insert the boundary
  // points first.
  if ( ! this->BoundaryVertexDeletion )
    {
    this->InsertBoundaryVertices();
    }

  // While the error metric is not satisfied, add point with greatest error. 
  // Note that this algorithm can terminate "prematurely" (e.g. compared to
  // the number of triangles) if the maximum error in the queue becomes zero.
  //
  int abortExecute=0;
  vtkIdType numInsertedPoints=0;
  int tenth=numPts/10+1;
  
  while ( !abortExecute && (inputPtId = this->TerrainError->Pop(0, error)) >= 0 )
    {
    if ( this->SatisfiesErrorMeasure((1.0/error)) )
      {
      break;
      }
    else
      {
      this->AddPointToTriangulation(inputPtId);
      if ( ! (++numInsertedPoints % tenth) )
        {
        this->UpdateProgress( (double)(numInsertedPoints>numPts?numPts:numInsertedPoints)/numPts);
        abortExecute = this->GetAbortExecute();
        }
      }
    }

  if (this->Normals)
    {
    this->OutputPD->SetNormals(this->Normals);
    this->Normals->Delete();
    this->Normals = 0;
    }

  vtkDebugMacro(<<"Output TIN contains: " << this->Mesh->GetNumberOfPoints() << " points"
                <<"and " << this->Mesh->GetNumberOfPolys() << " triangles");

  // The output triangle data was created incrementally by the Delaunay algorithm. 
  // Here we just clean up the data structures.
  //
  this->Neighbors->Delete();
  this->TerrainError->Delete();
  delete this->TerrainInfo;
  delete this->PointInfo;

  newPts->Delete();
  triangles->Delete();

  return 1;
}

/*----------------------------------------------------------------------
  "Scan conversion" routines to update all points lying in a triangle.
 
  Divide a triangle into two subtriangles as shown.
      
                      o  max
                     / \
                     |   \
                    /      \
                    |        \
              midL o..........o  midR
                   |        _/
                   /      _/
                  |     _/
                  /   _/
                 |  _/
                 /_/
                o    min
 
  This way we can scan the two subtriangles independently without worrying about
  the transistion in interpolation that occurs at the vertices.
 
  A triangle may be characterized in one of four ways:
    VTK_TWO_TRIANGLES: We can create a two triangle representation
    VTK_BOTTOM_TRIANGLE: We should only scan the lower triangle
    VTK_TOP_TRIANGLE: We should only scan the upper triangle
    VTK_DEGENERATE: The points are colinear (not scan converted)
 
  Configuration of the two triangles
  --------------------------------------------------------------------------*/
#define VTK_TWO_TRIANGLES   0 //most often
#define VTK_BOTTOM_TRIANGLE 1
#define VTK_TOP_TRIANGLE    2
#define VTK_DEGENERATE      3 //should never happen in this application

//---------------------------------------------------------------------------
// Update all points lying in the given triangle. This means indicating the triangle
// that the point is in, plus computing the error in the height field.
//
void vtkGreedyTerrainDecimation::UpdateTriangle(vtkIdType tri, int ij1[2], int ij2[2], int ij3[2],
                                                double h[3])
{
  int *min, *max, *midL, *midR, *mid, mid2[2];
  double t, tt;
  int i, j, xL, xR;
  double hMin, hMax, hMidL, hMidR, hL, hR;
  vtkIdType idx, inputPtId, maxInputPtId=0;
  double error, maxError=0.0;

  int type = this->CharacterizeTriangle(ij1, ij2, ij3, min, max, midL, midR, mid, mid2, 
                                        h, hMin, hMax, hMidL, hMidR);
  
  switch(type)
    {
    case VTK_BOTTOM_TRIANGLE:
    case VTK_TWO_TRIANGLES:
      for (j=min[1]+1; j<midL[1]; j++) //for all scan lines; skip vertices
        {
        idx = j*this->Dimensions[0];
        t = (double)(j - min[1]) / (midL[1] - min[1]);
        xL = (int)((1.0-t)*min[0] + t*midL[0]);
        xR = (int)((1.0-t)*min[0] + t*midR[0]);
        hL = (1.0-t)*hMin + t*hMidL;
        hR = (1.0-t)*hMin + t*hMidR;
        for (i=xL; i<=xR; i++)
          {
          inputPtId = i + idx;
          if ( (*this->TerrainInfo)[inputPtId].TriangleId != VTK_VERTEX_INSERTED )
            {
            (*this->TerrainInfo)[inputPtId].TriangleId = tri;
            if ( (xR-xL) > 0 )
              {
              tt = (double)(i-xL) / (xR-xL);
              error = (1.0-tt)*hL + tt*hR;
              }
            else
              {
              error = hL;
              }
            error = fabs( (double)this->Heights->GetTuple1(inputPtId) - error );
            if ( error > maxError )
              {
              maxError = error;
              maxInputPtId = inputPtId;
              }
            } //if vertex not inserted
          } //for this scanline
        } //for all scanlines in this triangle
      
      if ( type == VTK_BOTTOM_TRIANGLE )
        {
        break;
        }

    case VTK_TOP_TRIANGLE:
      //Start scanning the upper triangle
      for (j=max[1]-1; j>midL[1]; j--) //for all scan lines; skip vertices
        {
        idx = j*this->Dimensions[0];
        t = (double)(j - midL[1]) / (max[1] - midL[1]);
        xL = (int) (t*max[0] + (1.0-t)*midL[0]);
        xR = (int) (t*max[0] + (1.0-t)*midR[0]);
        hL = t*hMax + (1.0-t)*hMidL;
        hR = t*hMax + (1.0-t)*hMidR;
        for (i=xL; i<=xR; i++)
          {
          inputPtId = i + idx;
          if ( (*this->TerrainInfo)[inputPtId].TriangleId != VTK_VERTEX_INSERTED )
            {
            (*this->TerrainInfo)[inputPtId].TriangleId = tri;
            if ( (xR-xL) > 0 )
              {
              tt = (double)(i-xL) / (xR-xL);
              error = (1.0-tt)*hL + tt*hR;
              }
            else
              {
              error = hL;
              }
            error = fabs( (double)this->Heights->GetTuple1(inputPtId) - error );
            if ( error > maxError )
              {
              maxError = error;
              maxInputPtId = inputPtId;
              }
            }
          }
        }
      break;

    default:
      return;
    }

  //The maximum error in the triangle has been found. Insert it into the queue.
  if ( maxError > 0.0 )
    {
    this->TerrainError->DeleteId(maxInputPtId); //if previously inserted
    this->TerrainError->Insert((1.0/maxError),maxInputPtId);
    }
}


// Characterize the configuration of the triangle based on image coordinates
// (All points in triangulation are from an image).
//
int vtkGreedyTerrainDecimation::CharacterizeTriangle(int ij1[2], int ij2[2], int ij3[3],
                                                     int* &min, int* &max, int* &midL, int* &midR,
                                                     int* &mid, int mid2[2], double h[3], 
                                                     double &hMin, double &hMax, double &hL, 
                                                     double &hR)
{
  // Check for situations where one edge of triangle is horizontal
  //
  if ( ij1[1] == ij2[1] )
    {
    if ( ij1[0] < ij2[0] )
      {
      midL = ij1;
      midR = ij2;
      hL = h[0];
      hR = h[1];
      }
    else
      {
      midL = ij2;
      midR = ij1;
      hL = h[1];
      hR = h[0];
      }
    if( ij3[1] < ij1[1])
      {
      min = ij3;
      hMin = h[2];
      return VTK_BOTTOM_TRIANGLE;
      }
    else
      {
      max = ij3;
      hMax = h[2];
      return VTK_TOP_TRIANGLE;
      }
    }

  else if ( ij2[1] == ij3[1] )
    {
    if ( ij2[0] < ij3[0] )
      {
      midL = ij2;
      midR = ij3;
      hL = h[1];
      hR = h[2];
      }
    else
      {
      midL = ij3;
      midR = ij2;
      hL = h[2];
      hR = h[1];
      }
    if( ij1[1] < ij2[1])
      {
      min = ij1;
      hMin = h[0];
      return VTK_BOTTOM_TRIANGLE;
      }
    else
      {
      max = ij1;
      hMax = h[0];
      return VTK_TOP_TRIANGLE;
      }
    }

  else if ( ij3[1] == ij1[1] )
    {
    if ( ij3[0] < ij1[0] )
      {
      midL = ij3;
      midR = ij1;
      hL = h[2];
      hR = h[0];
      }
    else
      {
      midL = ij1;
      midR = ij3;
      hL = h[0];
      hR = h[2];
      }
    if( ij2[1] < ij3[1])
      {
      min = ij2;
      hMin = h[1];
      return VTK_BOTTOM_TRIANGLE;
      }
    else
      {
      max = ij2;
      hMax = h[1];
      return VTK_TOP_TRIANGLE;
      }
    }

  // Default situation (two triangles with no horizontal edges). 
  // Determine max, min and mid vertices.
  //
  // Find minimum
  if ( ij1[1] < ij2[1] )
    {
    if ( ij1[1] < ij3[1] )
      {
      min = ij1;
      hMin = h[0];
      }
    else
      {
      min = ij3;
      hMin = h[2];
      }
    }
  else
    {
    if ( ij2[1] < ij3[1] )
      {
      min = ij2;
      hMin = h[1];
      }
    else
      {
      min = ij3;
      hMin = h[2];
      }
    }

  // Find maximum
  if ( ij1[1] > ij2[1] )
    {
    if ( ij1[1] > ij3[1] )
      {
      max = ij1;
      hMax = h[0];
      }
    else
      {
      max = ij3;
      hMax = h[2];
      }
    }
  else
    {
    if ( ij2[1] > ij3[1] )
      {
      max = ij2;
      hMax = h[1];
      }
    else
      {
      max = ij3;
      hMax = h[2];
      }
    }

  // Find the midL and midR
  double hMid, hMid2;
  if ( ij1 != min && ij1 != max)
    {
    mid = ij1;
    hMid = h[0];
    }
  else if ( ij2 != min && ij2 != max)
    {
    mid = ij2;
    hMid = h[1];
    }
  else //if ( ij3 != min && ij2 != max)
    {
    mid = ij3;
    hMid = h[2];
    }

  // Computation of the intersection
  //
  mid2[1] = mid[1];
  double t = (double) (mid2[1] - min[1]) / (max[1] - min[1]);
  mid2[0] = (int) ((1.0-t)*min[0] + t*max[0] + 0.5); //rounding
  hMid2 = (1.0-t)*hMin + t*hMax;

  if ( mid[0] < mid2[0] )
    {
    midL = mid;
    midR = mid2;
    hL = hMid;
    hR = hMid2;
    }
  else
    {
    midL = mid2;
    midR = mid;
    hL = hMid2;
    hR = hMid;
    }

  return VTK_TWO_TRIANGLES;
}

int vtkGreedyTerrainDecimation::FillInputPortInformation(int, vtkInformation *info)
{
  info->Set(vtkAlgorithm::INPUT_REQUIRED_DATA_TYPE(), "vtkImageData");
  return 1;
}

void vtkGreedyTerrainDecimation::PrintSelf(ostream& os, vtkIndent indent)
{
  this->Superclass::PrintSelf(os,indent);
 
  os << indent << "Error Measure: ";
  if ( this->ErrorMeasure == VTK_ERROR_NUMBER_OF_TRIANGLES )
    {
    os << "Number of triangles\n";
    os << indent << "Number of triangles: " << this->NumberOfTriangles << "\n";
    }
  else if ( this->ErrorMeasure == VTK_ERROR_SPECIFIED_REDUCTION )
    {
    os << "Specified reduction\n";
    os << indent << "Reduction: " << this->Reduction << "\n";
    }
  else if ( this->ErrorMeasure == VTK_ERROR_ABSOLUTE )
    {
    os << "Absolute\n";
    os << indent << "Absolute Error: " << this->AbsoluteError << "\n";
    }
  else // this->ErrorMeasure == VTK_ERROR_RELATIVE
    {
    os << "Relative\n";
    os << indent << "Relative Error: " << this->RelativeError << "\n";
    }
  
  os << indent << "BoundaryVertexDeletion: " 
     << (this->BoundaryVertexDeletion ? "On\n" : "Off\n");
  os << indent << "ComputeNormals: " 
     << (this->ComputeNormals ? "On\n" : "Off\n");
}