1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
|
/*=========================================================================
Program: Visualization Toolkit
Module: $RCSfile: vtkImageMagnitude.cxx,v $
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "vtkImageMagnitude.h"
#include "vtkImageData.h"
#include "vtkImageProgressIterator.h"
#include "vtkInformation.h"
#include "vtkInformationVector.h"
#include "vtkObjectFactory.h"
#include "vtkPointData.h"
#include "vtkStreamingDemandDrivenPipeline.h"
#include <math.h>
vtkCxxRevisionMacro(vtkImageMagnitude, "$Revision: 1.42 $");
vtkStandardNewMacro(vtkImageMagnitude);
//----------------------------------------------------------------------------
vtkImageMagnitude::vtkImageMagnitude()
{
this->SetNumberOfInputPorts(1);
this->SetNumberOfOutputPorts(1);
}
int vtkImageMagnitude::RequestInformation (
vtkInformation * vtkNotUsed( request ),
vtkInformationVector ** vtkNotUsed( inputVector ),
vtkInformationVector * outputVector)
{
vtkDataObject::SetPointDataActiveScalarInfo(
outputVector->GetInformationObject(0), -1, 1);
return 1;
}
//----------------------------------------------------------------------------
// This execute method handles boundaries.
// it handles boundaries. Pixels are just replicated to get values
// out of extent.
template <class T>
void vtkImageMagnitudeExecute(vtkImageMagnitude *self,
vtkImageData *inData,
vtkImageData *outData,
int outExt[6], int id, T *)
{
vtkImageIterator<T> inIt(inData, outExt);
vtkImageProgressIterator<T> outIt(outData, outExt, self, id);
float sum;
// find the region to loop over
int maxC = inData->GetNumberOfScalarComponents();
int idxC;
// Loop through ouput pixels
while (!outIt.IsAtEnd())
{
T* inSI = inIt.BeginSpan();
T* outSI = outIt.BeginSpan();
T* outSIEnd = outIt.EndSpan();
while (outSI != outSIEnd)
{
// now process the components
sum = 0.0;
for (idxC = 0; idxC < maxC; idxC++)
{
sum += static_cast<float>(*inSI * *inSI);
++inSI;
}
*outSI = static_cast<T>(sqrt(sum));
++outSI;
}
inIt.NextSpan();
outIt.NextSpan();
}
}
//----------------------------------------------------------------------------
// This method contains a switch statement that calls the correct
// templated function for the input data type. The output data
// must match input type. This method does handle boundary conditions.
void vtkImageMagnitude::ThreadedExecute (vtkImageData *inData,
vtkImageData *outData,
int outExt[6], int id)
{
// This is really meta data and should be set in ExecuteInformation,
// but there are some issues to solve first.
if (id == 0 && outData->GetPointData()->GetScalars())
{
outData->GetPointData()->GetScalars()->SetName("Magnitude");
}
vtkDebugMacro(<< "Execute: inData = " << inData
<< ", outData = " << outData);
// this filter expects that input is the same type as output.
if (inData->GetScalarType() != outData->GetScalarType())
{
vtkErrorMacro(<< "Execute: input ScalarType, " << inData->GetScalarType()
<< ", must match out ScalarType " << outData->GetScalarType());
return;
}
switch (inData->GetScalarType())
{
vtkTemplateMacro(
vtkImageMagnitudeExecute( this, inData, outData,
outExt, id, static_cast<VTK_TT *>(0)));
default:
vtkErrorMacro(<< "Execute: Unknown ScalarType");
return;
}
}
|