1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
|
/*=========================================================================
Program: Visualization Toolkit
Module: $RCSfile: vtkImageMathematics.cxx,v $
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "vtkImageMathematics.h"
#include "vtkImageData.h"
#include "vtkInformation.h"
#include "vtkInformationVector.h"
#include "vtkObjectFactory.h"
#include "vtkStreamingDemandDrivenPipeline.h"
#include <math.h>
vtkCxxRevisionMacro(vtkImageMathematics, "$Revision: 1.53 $");
vtkStandardNewMacro(vtkImageMathematics);
//----------------------------------------------------------------------------
vtkImageMathematics::vtkImageMathematics()
{
this->Operation = VTK_ADD;
this->ConstantK = 1.0;
this->ConstantC = 0.0;
this->DivideByZeroToC = 0;
this->SetNumberOfInputPorts(2);
}
//----------------------------------------------------------------------------
// The output extent is the intersection.
int vtkImageMathematics::RequestInformation (
vtkInformation * vtkNotUsed(request),
vtkInformationVector **inputVector,
vtkInformationVector *outputVector)
{
// get the info objects
vtkInformation* outInfo = outputVector->GetInformationObject(0);
vtkInformation *inInfo = inputVector[0]->GetInformationObject(0);
vtkInformation *inInfo2 = inputVector[1]->GetInformationObject(0);
int ext[6], ext2[6], idx;
inInfo->Get(vtkStreamingDemandDrivenPipeline::WHOLE_EXTENT(),ext);
// two input take intersection
if (this->Operation == VTK_ADD || this->Operation == VTK_SUBTRACT ||
this->Operation == VTK_MULTIPLY || this->Operation == VTK_DIVIDE ||
this->Operation == VTK_MIN || this->Operation == VTK_MAX ||
this->Operation == VTK_ATAN2)
{
if (!inInfo2)
{
vtkErrorMacro(<< "Second input must be specified for this operation.");
return 1;
}
inInfo2->Get(vtkStreamingDemandDrivenPipeline::WHOLE_EXTENT(),ext2);
for (idx = 0; idx < 3; ++idx)
{
if (ext2[idx*2] > ext[idx*2])
{
ext[idx*2] = ext2[idx*2];
}
if (ext2[idx*2+1] < ext[idx*2+1])
{
ext[idx*2+1] = ext2[idx*2+1];
}
}
}
outInfo->Set(vtkStreamingDemandDrivenPipeline::WHOLE_EXTENT(),ext,6);
return 1;
}
template <class TValue, class TIvar>
void vtkImageMathematicsClamp(TValue &value, TIvar ivar, vtkImageData *data)
{
if (ivar < (TIvar) data->GetScalarTypeMin())
{
value = (TValue) data->GetScalarTypeMin();
}
else if (ivar > (TIvar) data->GetScalarTypeMax())
{
value = (TValue) data->GetScalarTypeMax();
}
else
{
value = (TValue) ivar;
}
}
//----------------------------------------------------------------------------
// This templated function executes the filter for any type of data.
// Handles the one input operations
template <class T>
void vtkImageMathematicsExecute1(vtkImageMathematics *self,
vtkImageData *in1Data, T *in1Ptr,
vtkImageData *outData, T *outPtr,
int outExt[6], int id)
{
int idxR, idxY, idxZ;
int maxY, maxZ;
vtkIdType inIncX, inIncY, inIncZ;
vtkIdType outIncX, outIncY, outIncZ;
int rowLength;
unsigned long count = 0;
unsigned long target;
int op = self->GetOperation();
// find the region to loop over
rowLength = (outExt[1] - outExt[0]+1)*in1Data->GetNumberOfScalarComponents();
// What a pain. Maybe I should just make another filter.
if (op == VTK_CONJUGATE)
{
rowLength = (outExt[1] - outExt[0] + 1);
}
maxY = outExt[3] - outExt[2];
maxZ = outExt[5] - outExt[4];
target = (unsigned long)((maxZ+1)*(maxY+1)/50.0);
target++;
// Get increments to march through data
in1Data->GetContinuousIncrements(outExt, inIncX, inIncY, inIncZ);
outData->GetContinuousIncrements(outExt, outIncX, outIncY, outIncZ);
int DivideByZeroToC = self->GetDivideByZeroToC();
double doubleConstantk = self->GetConstantK();
// Avoid casts by making constants the same type as input/output
// Of course they must be clamped to a valid range for the scalar type
T constantk; vtkImageMathematicsClamp(constantk, self->GetConstantK(), in1Data);
T constantc; vtkImageMathematicsClamp(constantc, self->GetConstantC(), in1Data);
// Loop through output pixels
for (idxZ = 0; idxZ <= maxZ; idxZ++)
{
for (idxY = 0; idxY <= maxY; idxY++)
{
if (!id)
{
if (!(count%target))
{
self->UpdateProgress(count/(50.0*target));
}
count++;
}
for (idxR = 0; idxR < rowLength; idxR++)
{
// Pixel operaton
switch (op)
{
case VTK_INVERT:
if (*in1Ptr)
{
*outPtr = (T)(1.0 / *in1Ptr);
}
else
{
if ( DivideByZeroToC )
{
*outPtr = constantc;
}
else
{
*outPtr = (T)outData->GetScalarTypeMax();
}
}
break;
case VTK_SIN:
*outPtr = (T)(sin((double)*in1Ptr));
break;
case VTK_COS:
*outPtr = (T)(cos((double)*in1Ptr));
break;
case VTK_EXP:
*outPtr = (T)(exp((double)*in1Ptr));
break;
case VTK_LOG:
*outPtr = (T)(log((double)*in1Ptr));
break;
case VTK_ABS:
*outPtr = (T)(fabs((double)*in1Ptr));
break;
case VTK_SQR:
*outPtr = (T)(*in1Ptr * *in1Ptr);
break;
case VTK_SQRT:
*outPtr = (T)(sqrt((double)*in1Ptr));
break;
case VTK_ATAN:
*outPtr = (T)(atan((double)*in1Ptr));
break;
case VTK_MULTIPLYBYK:
*outPtr = (T)(doubleConstantk * (double) *in1Ptr);
break;
case VTK_ADDC:
*outPtr = constantc + *in1Ptr;
break;
case VTK_REPLACECBYK:
*outPtr = (*in1Ptr == constantc) ? constantk : *in1Ptr;
break;
case VTK_CONJUGATE:
outPtr[0] = in1Ptr[0];
outPtr[1] = (T)(-1.0*(double)(in1Ptr[1]));
// Why bother trying to figure out the continuous increments.
outPtr++;
in1Ptr++;
break;
}
outPtr++;
in1Ptr++;
}
outPtr += outIncY;
in1Ptr += inIncY;
}
outPtr += outIncZ;
in1Ptr += inIncZ;
}
}
//----------------------------------------------------------------------------
// This templated function executes the filter for any type of data.
// Handles the two input operations
template <class T>
void vtkImageMathematicsExecute2(vtkImageMathematics *self,
vtkImageData *in1Data, T *in1Ptr,
vtkImageData *in2Data, T *in2Ptr,
vtkImageData *outData, T *outPtr,
int outExt[6], int id)
{
int idxR, idxY, idxZ;
int maxY, maxZ;
vtkIdType inIncX, inIncY, inIncZ;
vtkIdType in2IncX, in2IncY, in2IncZ;
vtkIdType outIncX, outIncY, outIncZ;
int rowLength;
unsigned long count = 0;
unsigned long target;
int op = self->GetOperation();
int DivideByZeroToC = self->GetDivideByZeroToC();
double constantc = self->GetConstantC();
// find the region to loop over
rowLength = (outExt[1] - outExt[0]+1)*in1Data->GetNumberOfScalarComponents();
// What a pain. Maybe I should just make another filter.
if (op == VTK_COMPLEX_MULTIPLY)
{
rowLength = (outExt[1] - outExt[0]+1);
}
maxY = outExt[3] - outExt[2];
maxZ = outExt[5] - outExt[4];
target = (unsigned long)((maxZ+1)*(maxY+1)/50.0);
target++;
// Get increments to march through data
in1Data->GetContinuousIncrements(outExt, inIncX, inIncY, inIncZ);
in2Data->GetContinuousIncrements(outExt, in2IncX, in2IncY, in2IncZ);
outData->GetContinuousIncrements(outExt, outIncX, outIncY, outIncZ);
// Loop through ouput pixels
for (idxZ = 0; idxZ <= maxZ; idxZ++)
{
for (idxY = 0; !self->AbortExecute && idxY <= maxY; idxY++)
{
if (!id)
{
if (!(count%target))
{
self->UpdateProgress(count/(50.0*target));
}
count++;
}
for (idxR = 0; idxR < rowLength; idxR++)
{
// Pixel operation
switch (op)
{
case VTK_ADD:
*outPtr = *in1Ptr + *in2Ptr;
break;
case VTK_SUBTRACT:
*outPtr = *in1Ptr - *in2Ptr;
break;
case VTK_MULTIPLY:
*outPtr = *in1Ptr * *in2Ptr;
break;
case VTK_DIVIDE:
if (*in2Ptr)
{
*outPtr = *in1Ptr / *in2Ptr;
}
else
{
if ( DivideByZeroToC )
{
*outPtr = (T) constantc;
}
else
{
// *outPtr = (T)(*in1Ptr / 0.00001);
*outPtr = (T)outData->GetScalarTypeMax();
}
}
break;
case VTK_MIN:
if (*in1Ptr < *in2Ptr)
{
*outPtr = *in1Ptr;
}
else
{
*outPtr = *in2Ptr;
}
break;
case VTK_MAX:
if (*in1Ptr > *in2Ptr)
{
*outPtr = *in1Ptr;
}
else
{
*outPtr = *in2Ptr;
}
break;
case VTK_ATAN2:
if (*in1Ptr == 0.0 && *in2Ptr == 0.0)
{
*outPtr = 0;
}
else
{
*outPtr = (T)atan2((double)*in1Ptr,(double)*in2Ptr);
}
break;
case VTK_COMPLEX_MULTIPLY:
outPtr[0] = in1Ptr[0] * in2Ptr[0] - in1Ptr[1] * in2Ptr[1];
outPtr[1] = in1Ptr[1] * in2Ptr[0] + in1Ptr[0] * in2Ptr[1];
// Why bother trtying to figure out the continuous increments.
outPtr++;
in1Ptr++;
in2Ptr++;
break;
}
outPtr++;
in1Ptr++;
in2Ptr++;
}
outPtr += outIncY;
in1Ptr += inIncY;
in2Ptr += in2IncY;
}
outPtr += outIncZ;
in1Ptr += inIncZ;
in2Ptr += in2IncZ;
}
}
//----------------------------------------------------------------------------
// This method is passed a input and output datas, and executes the filter
// algorithm to fill the output from the inputs.
// It just executes a switch statement to call the correct function for
// the datas data types.
void vtkImageMathematics::ThreadedRequestData(
vtkInformation * vtkNotUsed( request ),
vtkInformationVector ** vtkNotUsed( inputVector ),
vtkInformationVector * vtkNotUsed( outputVector ),
vtkImageData ***inData,
vtkImageData **outData,
int outExt[6], int id)
{
void *inPtr1;
void *outPtr;
inPtr1 = inData[0][0]->GetScalarPointerForExtent(outExt);
outPtr = outData[0]->GetScalarPointerForExtent(outExt);
if (this->Operation == VTK_ADD || this->Operation == VTK_SUBTRACT ||
this->Operation == VTK_MULTIPLY || this->Operation == VTK_DIVIDE ||
this->Operation == VTK_MIN || this->Operation == VTK_MAX ||
this->Operation == VTK_ATAN2 || this->Operation == VTK_COMPLEX_MULTIPLY)
{
void *inPtr2;
if ( this->Operation == VTK_COMPLEX_MULTIPLY )
{
if (inData[0][0]->GetNumberOfScalarComponents() != 2 ||
inData[1][0]->GetNumberOfScalarComponents() != 2)
{
vtkErrorMacro("Complex inputs must have two components.");
return;
}
}
if (!inData[1] || ! inData[1][0])
{
vtkErrorMacro("ImageMathematics requested to perform a two input operation with only one input\n");
return;
}
inPtr2 = inData[1][0]->GetScalarPointerForExtent(outExt);
// this filter expects that input is the same type as output.
if (inData[0][0]->GetScalarType() != outData[0]->GetScalarType())
{
vtkErrorMacro(<< "Execute: input1 ScalarType, "
<< inData[0][0]->GetScalarType()
<< ", must match output ScalarType "
<< outData[0]->GetScalarType());
return;
}
if (inData[1][0]->GetScalarType() != outData[0]->GetScalarType())
{
vtkErrorMacro(<< "Execute: input2 ScalarType, "
<< inData[1][0]->GetScalarType()
<< ", must match output ScalarType "
<< outData[0]->GetScalarType());
return;
}
// this filter expects that inputs that have the same number of components
if (inData[0][0]->GetNumberOfScalarComponents() !=
inData[1][0]->GetNumberOfScalarComponents())
{
vtkErrorMacro(<< "Execute: input1 NumberOfScalarComponents, "
<< inData[0][0]->GetNumberOfScalarComponents()
<< ", must match out input2 NumberOfScalarComponents "
<< inData[1][0]->GetNumberOfScalarComponents());
return;
}
switch (inData[0][0]->GetScalarType())
{
vtkTemplateMacro(
vtkImageMathematicsExecute2(this,inData[0][0], (VTK_TT *)(inPtr1),
inData[1][0], (VTK_TT *)(inPtr2),
outData[0], (VTK_TT *)(outPtr), outExt, id));
default:
vtkErrorMacro(<< "Execute: Unknown ScalarType");
return;
}
}
else
{
// this filter expects that input is the same type as output.
if (inData[0][0]->GetScalarType() != outData[0]->GetScalarType())
{
vtkErrorMacro(<< "Execute: input ScalarType, " << inData[0][0]->GetScalarType()
<< ", must match out ScalarType " << outData[0]->GetScalarType());
return;
}
if ( this->Operation == VTK_CONJUGATE )
{
if (inData[0][0]->GetNumberOfScalarComponents() != 2)
{
vtkErrorMacro("Complex inputs must have two components.");
return;
}
}
switch (inData[0][0]->GetScalarType())
{
vtkTemplateMacro(
vtkImageMathematicsExecute1(this, inData[0][0], (VTK_TT *)(inPtr1),
outData[0], (VTK_TT *)(outPtr), outExt, id));
default:
vtkErrorMacro(<< "Execute: Unknown ScalarType");
return;
}
}
}
int vtkImageMathematics::FillInputPortInformation(
int port, vtkInformation* info)
{
if (port == 1)
{
info->Set(vtkAlgorithm::INPUT_IS_OPTIONAL(), 1);
}
info->Set(vtkAlgorithm::INPUT_REQUIRED_DATA_TYPE(), "vtkImageData");
return 1;
}
void vtkImageMathematics::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os,indent);
os << indent << "Operation: " << this->Operation << "\n";
os << indent << "ConstantK: " << this->ConstantK << "\n";
os << indent << "ConstantC: " << this->ConstantC << "\n";
os << indent << "DivideByZeroToC: ";
if ( this->DivideByZeroToC )
{
os << "On\n";
}
else
{
os << "Off\n";
}
}
|