1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
|
/*=========================================================================
Program: Visualization Toolkit
Module: $RCSfile: vtkSurfaceReconstructionFilter.cxx,v $
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "vtkSurfaceReconstructionFilter.h"
#include "vtkFloatArray.h"
#include "vtkIdList.h"
#include "vtkImageData.h"
#include "vtkMath.h"
#include "vtkInformation.h"
#include "vtkInformationVector.h"
#include "vtkObjectFactory.h"
#include "vtkStreamingDemandDrivenPipeline.h"
#include "vtkPointData.h"
#include "vtkPointLocator.h"
#include "vtkPoints.h"
vtkCxxRevisionMacro(vtkSurfaceReconstructionFilter, "$Revision: 1.35 $");
vtkStandardNewMacro(vtkSurfaceReconstructionFilter);
vtkSurfaceReconstructionFilter::vtkSurfaceReconstructionFilter()
{
this->NeighborhoodSize = 20;
// negative values cause the algorithm to make a reasonable guess
this->SampleSpacing = -1.0;
}
// some simple routines for vector math
void vtkCopyBToA(double* a,double* b)
{
for(int i=0;i<3;i++)
{
a[i] = b[i];
}
}
void vtkSubtractBFromA(double* a,double* b)
{
for(int i=0;i<3;i++)
{
a[i] -= b[i];
}
}
void vtkAddBToA(double* a,double* b)
{
for(int i=0;i<3;i++)
{
a[i] += b[i];
}
}
void vtkMultiplyBy(double* a,double f)
{
for(int i=0;i<3;i++)
{
a[i] *= f;
}
}
void vtkDivideBy(double* a,double f)
{
for(int i=0;i<3;i++)
{
a[i] /= f;
}
}
// Routines for matrix creation
void vtkSRFreeMatrix(double **m, long nrl, long nrh, long ncl, long nch);
double **vtkSRMatrix(long nrl, long nrh, long ncl, long nch);
void vtkSRFreeVector(double *v, long nl, long nh);
double *vtkSRVector(long nl, long nh);
// set a matrix to zero
void vtkSRMakeZero(double **m,long nrl, long nrh, long ncl, long nch)
{
int i,j;
for(i=nrl;i<=nrh;i++)
{
for(j=ncl;j<=nch;j++)
{
m[i][j] = 0.0;
}
}
}
// add v*Transpose(v) to m, where v is 3x1 and m is 3x3
void vtkSRAddOuterProduct(double **m,double *v);
// scalar multiply a matrix
void vtkSRMultiply(double **m,double f,long nrl, long nrh, long ncl, long nch)
{
int i,j;
for(i=nrl;i<=nrh;i++)
{
for(j=ncl;j<=nch;j++)
{
m[i][j] *= f;
}
}
}
//----------------------------------------------------------------------------
int vtkSurfaceReconstructionFilter::FillInputPortInformation(
int vtkNotUsed( port ), vtkInformation* info)
{
info->Set(vtkAlgorithm::INPUT_REQUIRED_DATA_TYPE(), "vtkDataSet");
return 1;
}
int vtkSurfaceReconstructionFilter::RequestInformation (
vtkInformation * vtkNotUsed(request),
vtkInformationVector ** vtkNotUsed( inputVector ),
vtkInformationVector *outputVector)
{
// get the info objects
vtkInformation* outInfo = outputVector->GetInformationObject(0);
// would be nice to compute the whole extent but we need more info to
// compute it.
outInfo->Set(vtkStreamingDemandDrivenPipeline::WHOLE_EXTENT(),0,1,0,1,0,1);
vtkDataObject::SetPointDataActiveScalarInfo(outInfo, VTK_FLOAT, 1);
return 1;
}
//-----------------------------------------------------------------------------
struct SurfacePoint
{
double loc[3];
double o[3],n[3]; // plane centre and normal
vtkIdList *neighbors; // id's of points within LocalRadius of this point
double *costs; // should have same length as neighbors, cost for corresponding points
char isVisited;
// simple constructor to initialise the members
SurfacePoint() : neighbors(vtkIdList::New()), isVisited(0) {}
~SurfacePoint() { delete []costs; neighbors->Delete(); }
};
//-----------------------------------------------------------------------------
int vtkSurfaceReconstructionFilter::RequestData(
vtkInformation* vtkNotUsed( request ),
vtkInformationVector** inputVector,
vtkInformationVector* outputVector)
{
// get the input
vtkInformation* inInfo = inputVector[0]->GetInformationObject(0);
vtkDataSet *input = vtkDataSet::SafeDownCast(
inInfo->Get(vtkDataObject::DATA_OBJECT()));
// get the output
vtkInformation *outInfo = outputVector->GetInformationObject(0);
vtkImageData *output = vtkImageData::SafeDownCast(
outInfo->Get(vtkDataObject::DATA_OBJECT()));
const vtkIdType COUNT = input->GetNumberOfPoints();
SurfacePoint *surfacePoints;
vtkIdType i, j;
int k;
if ( COUNT < 1 )
{
vtkErrorMacro(<<"No points to reconstruct");
return 1;
}
surfacePoints = new SurfacePoint[COUNT];
vtkDebugMacro(<<"Reconstructing " << COUNT << " points");
//time_t start_time,t1,t2,t3,t4;
//time(&start_time);
// --------------------------------------------------------------------------
// 1. Build local connectivity graph
// -------------------------------------------------------------------------
{
vtkPointLocator *locator = vtkPointLocator::New();
locator->SetDataSet(input);
vtkIdList *locals = vtkIdList::New();
// if a pair is close, add each one as a neighbor of the other
for(i=0;i<COUNT;i++)
{
SurfacePoint *p = &surfacePoints[i];
vtkCopyBToA(p->loc,input->GetPoint(i));
locator->FindClosestNPoints(this->NeighborhoodSize,p->loc,locals);
int iNeighbor;
for(j=0;j<locals->GetNumberOfIds();j++)
{
iNeighbor = locals->GetId(j);
if(iNeighbor!=i)
{
p->neighbors->InsertNextId(iNeighbor);
surfacePoints[iNeighbor].neighbors->InsertNextId(i);
}
}
}
locator->Delete();
locals->Delete();
}
//time(&t1);
// --------------------------------------------------------------------------
// 2. Estimate a plane at each point using local points
// --------------------------------------------------------------------------
{
double *pointi;
double **covar,*v3d,*eigenvalues,**eigenvectors;
covar = vtkSRMatrix(0,2,0,2);
v3d = vtkSRVector(0,2);
eigenvalues = vtkSRVector(0,2);
eigenvectors = vtkSRMatrix(0,2,0,2);
for(i=0;i<COUNT;i++)
{
SurfacePoint *p = &surfacePoints[i];
// first find the centroid of the neighbors
vtkCopyBToA(p->o,p->loc);
int number=1;
vtkIdType neighborIndex;
for(j=0;j<p->neighbors->GetNumberOfIds();j++)
{
neighborIndex = p->neighbors->GetId(j);
pointi = input->GetPoint(neighborIndex);
vtkAddBToA(p->o,pointi);
number++;
}
vtkDivideBy(p->o,number);
// then compute the covariance matrix
vtkSRMakeZero(covar,0,2,0,2);
for(k=0;k<3;k++)
v3d[k] = p->loc[k] - p->o[k];
vtkSRAddOuterProduct(covar,v3d);
for(j=0;j<p->neighbors->GetNumberOfIds();j++)
{
neighborIndex = p->neighbors->GetId(j);
pointi = input->GetPoint(neighborIndex);
for(k=0;k<3;k++)
{
v3d[k] = pointi[k] - p->o[k];
}
vtkSRAddOuterProduct(covar,v3d);
}
vtkSRMultiply(covar,1.0/number,0,2,0,2);
// then extract the third eigenvector
vtkMath::Jacobi(covar,eigenvalues,eigenvectors);
// third eigenvector (column 2, ordered by eigenvalue magnitude) is plane normal
for(k=0;k<3;k++)
{
p->n[k] = eigenvectors[k][2];
}
}
vtkSRFreeMatrix(covar,0,2,0,2);
vtkSRFreeVector(v3d,0,2);
vtkSRFreeVector(eigenvalues,0,2);
vtkSRFreeMatrix(eigenvectors,0,2,0,2);
}
//time(&t2);
//--------------------------------------------------------------------------
// 3a. Compute a cost between every pair of neighbors for the MST
// --------------------------------------------------------------------------
// cost = 1 - |normal1.normal2|
// ie. cost is 0 if planes are parallel, 1 if orthogonal (least parallel)
for(i=0;i<COUNT;i++)
{
SurfacePoint *p = &surfacePoints[i];
p->costs = new double[p->neighbors->GetNumberOfIds()];
// compute cost between all its neighbors
// (bit inefficient to do this for every point, as cost is symmetric)
for(j=0;j<p->neighbors->GetNumberOfIds();j++)
{
p->costs[j] = 1.0 -
fabs(vtkMath::Dot(p->n,surfacePoints[p->neighbors->GetId(j)].n));
}
}
// --------------------------------------------------------------------------
// 3b. Ensure consistency in plane direction between neighbors
// --------------------------------------------------------------------------
// method: guess first one, then walk through tree along most-parallel
// neighbors MST, flipping the new normal if inconsistent
// to walk minimal spanning tree, keep record of vertices visited and list
// of those near to any visited point but not themselves visited. Start
// with just one vertex as visited. Pick the vertex in the neighbors list
// that has the lowest cost connection with a visited vertex. Record this
// vertex as visited, add any new neighbors to the neighbors list.
int orientationPropagation=1;
if(orientationPropagation)
{// set to false if you don't want orientation propagation (for testing)
vtkIdList *nearby = vtkIdList::New(); // list of nearby, unvisited points
// start with some vertex
int first=0; // index of starting vertex
surfacePoints[first].isVisited = 1;
// add all the neighbors of the starting vertex into nearby
for(j=0;j<surfacePoints[first].neighbors->GetNumberOfIds();j++)
{
nearby->InsertNextId(surfacePoints[first].neighbors->GetId(j));
}
double cost,lowestCost;
int cheapestNearby = 0, connectedVisited = 0;
// repeat until nearby is empty:
while(nearby->GetNumberOfIds()>0)
{
// for each nearby point:
vtkIdType iNearby,iNeighbor;
lowestCost = VTK_FLOAT_MAX;
for(i=0;i<nearby->GetNumberOfIds();i++)
{
iNearby = nearby->GetId(i);
// test cost against all neighbors that are members of visited
for(j=0;j<surfacePoints[iNearby].neighbors->GetNumberOfIds();j++)
{
iNeighbor = surfacePoints[iNearby].neighbors->GetId(j);
if(surfacePoints[iNeighbor].isVisited)
{
cost = surfacePoints[iNearby].costs[j];
// pick lowest cost for this nearby point
if(cost<lowestCost)
{
lowestCost = cost;
cheapestNearby = iNearby;
connectedVisited = iNeighbor;
// optional: can break out if satisfied with parallelness
if(lowestCost<0.1)
{
i = nearby->GetNumberOfIds();
break;
}
}
}
}
}
if(connectedVisited == cheapestNearby)
{
vtkErrorMacro (<< "Internal error in vtkSurfaceReconstructionFilter");
return 0;
}
// correct the orientation of the point if necessary
if(vtkMath::Dot(surfacePoints[cheapestNearby].n,
surfacePoints[connectedVisited].n)<0.0F)
{
// flip this normal
vtkMultiplyBy(surfacePoints[cheapestNearby].n,-1);
}
// add this nearby point to visited
if(surfacePoints[cheapestNearby].isVisited != 0)
{
vtkErrorMacro (<< "Internal error in vtkSurfaceReconstructionFilter");
return 0;
}
surfacePoints[cheapestNearby].isVisited = 1;
// remove from nearby
nearby->DeleteId(cheapestNearby);
// add all new nearby points to nearby
for(j=0;j<surfacePoints[cheapestNearby].neighbors->GetNumberOfIds();j++)
{
iNeighbor = surfacePoints[cheapestNearby].neighbors->GetId(j);
if(surfacePoints[iNeighbor].isVisited == 0)
{
nearby->InsertUniqueId(iNeighbor);
}
}
}
nearby->Delete();
}
//time(&t3);
// --------------------------------------------------------------------------
// 4. Compute signed distance to surface for every point on a 3D grid
// --------------------------------------------------------------------------
{
// need to know the bounding rectangle
double bounds[6];
for(i=0;i<3;i++)
{
bounds[i*2]=input->GetBounds()[i*2];
bounds[i*2+1]=input->GetBounds()[i*2+1];
}
// estimate the spacing if required
if(this->SampleSpacing<=0.0)
{
// spacing guessed as cube root of (volume divided by number of points)
this->SampleSpacing = pow((double)(bounds[1]-bounds[0])*
(bounds[3]-bounds[2])*(bounds[5]-bounds[4]) /
(double)COUNT, (double)(1.0/3.0));
vtkDebugMacro(<<"Estimated sample spacing as: " << this->SampleSpacing );
}
// allow a border around the volume to allow sampling around the extremes
for(i=0;i<3;i++)
{
bounds[i*2]-=this->SampleSpacing*2;
bounds[i*2+1]+=this->SampleSpacing*2;
}
double topleft[3] = {bounds[0],bounds[2],bounds[4]};
double bottomright[3] = {bounds[1],bounds[3],bounds[5]};
int dim[3];
for(i=0;i<3;i++)
{
dim[i] = (int)((bottomright[i]-topleft[i])/this->SampleSpacing);
}
vtkDebugMacro(<<"Created output volume of dimensions: ("
<< dim[0] << ", " << dim[1] << ", " << dim[2] << ")" );
// initialise the output volume
outInfo->Set(vtkStreamingDemandDrivenPipeline::WHOLE_EXTENT(),
0, dim[0]-1, 0, dim[1]-1, 0, dim[2]-1);
output->SetExtent(0, dim[0]-1, 0, dim[1]-1, 0, dim[2]-1);
output->AllocateScalars();
outInfo->Set(vtkStreamingDemandDrivenPipeline::UPDATE_EXTENT(),
0, dim[0]-1, 0, dim[1]-1, 0, dim[2]-1);
output->SetUpdateExtent(0, dim[0]-1, 0, dim[1]-1, 0, dim[2]-1);
vtkFloatArray *newScalars =
vtkFloatArray::SafeDownCast(output->GetPointData()->GetScalars());
outInfo->Set(vtkDataObject::SPACING(),
this->SampleSpacing, this->SampleSpacing, this->SampleSpacing);
outInfo->Set(vtkDataObject::ORIGIN(),topleft,3);
// initialise the point locator (have to use point insertion because we
// need to set our own bounds, slightly larger than the dataset to allow
// for sampling around the edge)
vtkPointLocator *locator = vtkPointLocator::New();
vtkPoints *newPts = vtkPoints::New();
locator->InitPointInsertion(newPts,bounds,(int)COUNT);
for(i=0;i<COUNT;i++)
{
locator->InsertPoint(i,surfacePoints[i].loc);
}
// go through the array probing the values
int x,y,z;
int iClosestPoint;
int zOffset,yOffset,offset;
double probeValue;
double point[3],temp[3];
for(z=0;z<dim[2];z++)
{
zOffset = z*dim[1]*dim[0];
point[2] = topleft[2] + z*this->SampleSpacing;
for(y=0;y<dim[1];y++)
{
yOffset = y*dim[0] + zOffset;
point[1] = topleft[1] + y*this->SampleSpacing;
for(x=0;x<dim[0];x++)
{
offset = x + yOffset;
point[0] = topleft[0] + x*this->SampleSpacing;
// find the distance from the probe to the plane of the nearest point
iClosestPoint = locator->FindClosestInsertedPoint(point);
if(iClosestPoint==-1)
{
vtkErrorMacro (<< "Internal error");
return 0;
}
vtkCopyBToA(temp,point);
vtkSubtractBFromA(temp,surfacePoints[iClosestPoint].loc);
probeValue = vtkMath::Dot(temp,surfacePoints[iClosestPoint].n);
newScalars->SetValue(offset,probeValue);
}
}
}
locator->Delete();
newPts->Delete();
}
//time(&t4);
// Clear up everything
delete [] surfacePoints;
return 1;
}
void vtkSurfaceReconstructionFilter::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os,indent);
os << indent << "Neighborhood Size:" << this->NeighborhoodSize << "\n";
os << indent << "Sample Spacing:" << this->SampleSpacing << "\n";
}
void vtkSRAddOuterProduct(double **m,double *v)
{
int i,j;
for(i=0;i<3;i++)
{
for(j=0;j<3;j++)
{
m[i][j] += v[i]*v[j];
}
}
}
#define VTK_NR_END 1
#define VTK_FREE_ARG char*
// allocate a float vector with subscript range v[nl..nh]
double *vtkSRVector(long nl, long nh)
{
double *v;
v = new double [nh-nl+1+VTK_NR_END];
if (!v)
{
vtkGenericWarningMacro(<<"allocation failure in vector()");
return NULL;
}
return (v-nl+VTK_NR_END);
}
// allocate a float matrix with subscript range m[nrl..nrh][ncl..nch]
double **vtkSRMatrix(long nrl, long nrh, long ncl, long nch)
{
long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;
double **m;
// allocate pointers to rows
m = new double * [nrow+VTK_NR_END];
if (!m)
{
vtkGenericWarningMacro(<<"allocation failure 1 in Matrix()");
return NULL;
}
m += VTK_NR_END;
m -= nrl;
// allocate rows and set pointers to them
m[nrl] = new double[nrow*ncol+VTK_NR_END];
if (!m[nrl])
{
vtkGenericWarningMacro("allocation failure 2 in Matrix()");
return NULL;
}
m[nrl] += VTK_NR_END;
m[nrl] -= ncl;
for(i=nrl+1;i<=nrh;i++)
{
m[i] = m[i-1]+ncol;
}
// return pointer to array of pointers to rows
return m;
}
// free a double vector allocated with SRVector()
void vtkSRFreeVector(double *v, long nl, long vtkNotUsed(nh))
{
delete [] (v+nl-VTK_NR_END);
}
// free a double matrix allocated by Matrix()
void vtkSRFreeMatrix(double **m, long nrl, long vtkNotUsed(nrh),
long ncl, long vtkNotUsed(nch))
{
delete [] (m[nrl]+ncl-VTK_NR_END);
delete [] (m+nrl-VTK_NR_END);
}
#undef VTK_NR_END
#undef VTK_FREE_ARG
|