1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
|
/*=========================================================================
Program: Visualization Toolkit
Module: $RCSfile: vtkDataArrayTemplate.txx,v $
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#ifndef __vtkDataArrayTemplate_txx
#define __vtkDataArrayTemplate_txx
#include "vtkDataArrayTemplate.h"
#include <vtkstd/exception>
// We do not provide a definition for the copy constructor or
// operator=. Block the warning.
#ifdef _MSC_VER
# pragma warning (disable: 4661)
#endif
//----------------------------------------------------------------------------
template <class T>
vtkDataArrayTemplate<T>::vtkDataArrayTemplate(vtkIdType numComp):
vtkDataArray(numComp)
{
this->Array = 0;
this->Tuple = 0;
this->TupleSize = 0;
this->SaveUserArray = 0;
}
//----------------------------------------------------------------------------
template <class T>
vtkDataArrayTemplate<T>::~vtkDataArrayTemplate()
{
if ((this->Array) && (!this->SaveUserArray))
{
free(this->Array);
}
if(this->Tuple)
{
free(this->Tuple);
}
}
//----------------------------------------------------------------------------
// This method lets the user specify data to be held by the array. The
// array argument is a pointer to the data. size is the size of
// the array supplied by the user. Set save to 1 to keep the class
// from deleting the array when it cleans up or reallocates memory.
// The class uses the actual array provided; it does not copy the data
// from the suppled array.
template <class T>
void vtkDataArrayTemplate<T>::SetArray(T* array, vtkIdType size, int save)
{
if ((this->Array) && (!this->SaveUserArray))
{
vtkDebugMacro (<< "Deleting the array...");
free(this->Array);
}
else
{
vtkDebugMacro (<<"Warning, array not deleted, but will point to new array.");
}
vtkDebugMacro(<<"Setting array to: " << static_cast<void*>(array));
this->Array = array;
this->Size = size;
this->MaxId = size-1;
this->SaveUserArray = save;
}
//----------------------------------------------------------------------------
// Allocate memory for this array. Delete old storage only if necessary.
template <class T>
int vtkDataArrayTemplate<T>::Allocate(vtkIdType sz, vtkIdType)
{
this->MaxId = -1;
if(sz > this->Size)
{
if(this->Array && !this->SaveUserArray)
{
free(this->Array);
}
this->Array = 0;
this->Size = 0;
this->SaveUserArray = 0;
vtkIdType newSize = (sz > 0 ? sz : 1);
this->Array = (T*)malloc(newSize * sizeof(T));
if(!this->Array)
{
vtkErrorMacro("Unable to allocate " << newSize
<< " elements of size " << sizeof(T)
<< " bytes. ");
return 0;
}
this->Size = newSize;
}
return 1;
}
//----------------------------------------------------------------------------
// Release storage and reset array to initial state.
template <class T>
void vtkDataArrayTemplate<T>::Initialize()
{
if(this->Array && !this->SaveUserArray)
{
free(this->Array);
}
this->Array = 0;
this->Size = 0;
this->MaxId = -1;
this->SaveUserArray = 0;
}
//----------------------------------------------------------------------------
// Deep copy of another double array.
template <class T>
void vtkDataArrayTemplate<T>::DeepCopy(vtkDataArray* fa)
{
// Do nothing on a NULL input.
if(!fa)
{
return;
}
// Avoid self-copy.
if(this == fa)
{
return;
}
// If data type does not match, do copy with conversion.
if(fa->GetDataType() != this->GetDataType())
{
this->Superclass::DeepCopy(fa);
return;
}
// Free our previous memory.
if(this->Array && !this->SaveUserArray)
{
free(this->Array);
}
// Copy the given array into new memory.
this->NumberOfComponents = fa->GetNumberOfComponents();
this->MaxId = fa->GetMaxId();
this->Size = fa->GetSize();
this->SaveUserArray = 0;
this->Array = (T*)malloc(this->Size * sizeof(T));
if(!this->Array)
{
vtkErrorMacro("Unable to allocate " << this->Size
<< " elements of size " << sizeof(T)
<< " bytes. ");
this->Size = 0;
this->NumberOfComponents = 0;
this->MaxId = -1;
return;
}
memcpy(this->Array, fa->GetVoidPointer(0), this->Size*sizeof(T));
}
//----------------------------------------------------------------------------
template <class T>
void vtkDataArrayTemplate<T>::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os,indent);
vtkOStreamWrapper osw(os);
if(this->Array)
{
osw << indent << "Array: " << static_cast<void*>(this->Array) << "\n";
}
else
{
osw << indent << "Array: (null)\n";
}
}
//----------------------------------------------------------------------------
// Protected function does "reallocate"
template <class T>
T* vtkDataArrayTemplate<T>::ResizeAndExtend(vtkIdType sz)
{
T* newArray;
vtkIdType newSize;
if(sz > this->Size)
{
// Requested size is bigger than current size. Allocate enough
// memory to fit the requested size and be more than double the
// currently allocated memory.
newSize = this->Size + sz;
}
else if (sz == this->Size)
{
// Requested size is equal to current size. Do nothing.
return this->Array;
}
else
{
// Requested size is smaller than current size. Squeeze the
// memory.
newSize = sz;
}
// Wipe out the array completely if new size is zero.
if(newSize <= 0)
{
this->Initialize();
return 0;
}
// Allocate the new array or reallocate the old.
if(this->Array && this->SaveUserArray)
{
// The old array is owned by the user so we cannot try to
// reallocate it. Just allocate new memory that we will own.
newArray = (T*)malloc(newSize*sizeof(T));
if(!newArray)
{
vtkErrorMacro("Unable to allocate " << newSize
<< " elements of size " << sizeof(T)
<< " bytes. ");
return 0;
}
// Copy the data from the old array.
memcpy(newArray, this->Array,
(newSize < this->Size ? newSize : this->Size) * sizeof(T));
}
else
{
// Try to reallocate with minimal memory usage and possibly avoid
// copying.
newArray = (T*)realloc(this->Array, newSize*sizeof(T));
if(!newArray)
{
vtkErrorMacro("Unable to allocate " << newSize
<< " elements of size " << sizeof(T)
<< " bytes. ");
return 0;
}
}
// Allocation was successful. Save it.
if((newSize-1) < this->MaxId)
{
this->MaxId = newSize-1;
}
this->Size = newSize;
this->Array = newArray;
// This object has now allocated its memory and owns it.
this->SaveUserArray = 0;
return this->Array;
}
//----------------------------------------------------------------------------
template <class T>
int vtkDataArrayTemplate<T>::Resize(vtkIdType sz)
{
if(this->ResizeAndExtend(sz*this->NumberOfComponents) || sz <= 0)
{
return 1;
}
else
{
return 0;
}
}
//----------------------------------------------------------------------------
// Set the number of n-tuples in the array.
template <class T>
void vtkDataArrayTemplate<T>::SetNumberOfTuples(vtkIdType number)
{
this->SetNumberOfValues(number*this->NumberOfComponents);
}
//----------------------------------------------------------------------------
// Get a pointer to a tuple at the ith location. This is a dangerous method
// (it is not thread safe since a pointer is returned).
template <class T>
double* vtkDataArrayTemplate<T>::GetTuple(vtkIdType i)
{
// If the small Tuple array fails to allocate we need something to
// return. This will avoid an immediate crash for arrays that do
// not have too many components.
static double sentryTuple[6] = {0,0,0,0,0,0};
#if 1
// Allocate a larger tuple buffer if needed.
if(this->TupleSize < this->NumberOfComponents)
{
this->TupleSize = this->NumberOfComponents;
free(this->Tuple);
this->Tuple = (double*)malloc(this->TupleSize * sizeof(double));
}
// Make sure tuple allocation succeeded.
if(!this->Tuple)
{
vtkErrorMacro("Unable to allocate " << this->TupleSize
<< " elements of size " << sizeof(double)
<< " bytes. ");
return sentryTuple;
}
// Copy the data into the tuple.
T* t = this->Array + this->NumberOfComponents*i;
for(int j=0; j < this->NumberOfComponents; ++j)
{
this->Tuple[j] = static_cast<double>(t[j]);
}
return this->Tuple;
#else
// Use this version along with purify or valgrind to detect code
// that saves the pointer returned by GetTuple. By always
// allocating a new tuple and freeing the old one code that keeps
// the pointer will do invalid reads or writes.
double* newTuple;
newTuple = (double*)malloc(this->NumberOfComponents * sizeof(double));
if(!newTuple)
{
vtkErrorMacro("Unable to allocate " << this->NumberOfComponents
<< " elements of size " << sizeof(double)
<< " bytes. ");
return sentryTuple;
}
// Copy the data into the new tuple.
T* t = this->Array + this->NumberOfComponents*i;
for(int j=0; j < this->NumberOfComponents; ++j)
{
newTuple[j] = static_cast<double>(t[j]);
}
// Replace the old tuple with the new one.
free(this->Tuple);
this->Tuple = newTuple;
return this->Tuple;
#endif
}
//----------------------------------------------------------------------------
// Copy the tuple value into a user-provided array.
template <class T>
void vtkDataArrayTemplate<T>::GetTuple(vtkIdType i, double* tuple)
{
T* t = this->Array + this->NumberOfComponents*i;
for(int j=0; j < this->NumberOfComponents; ++j)
{
tuple[j] = static_cast<double>(t[j]);
}
}
//----------------------------------------------------------------------------
template <class T>
void vtkDataArrayTemplate<T>::GetTupleValue(vtkIdType i, T* tuple)
{
T* t = this->Array + this->NumberOfComponents*i;
for(int j=0; j < this->NumberOfComponents; ++j)
{
tuple[j] = t[j];
}
}
//----------------------------------------------------------------------------
// Set the tuple value at the ith location in the array.
template <class T>
void vtkDataArrayTemplate<T>::SetTuple(vtkIdType i, const float* tuple)
{
vtkIdType loc = i * this->NumberOfComponents;
for(int j=0; j < this->NumberOfComponents; ++j)
{
this->Array[loc+j] = static_cast<T>(tuple[j]);
}
}
template <class T>
void vtkDataArrayTemplate<T>::SetTuple(vtkIdType i, const double* tuple)
{
vtkIdType loc = i * this->NumberOfComponents;
for(int j=0; j < this->NumberOfComponents; ++j)
{
this->Array[loc+j] = static_cast<T>(tuple[j]);
}
}
template <class T>
void vtkDataArrayTemplate<T>::SetTupleValue(vtkIdType i, const T* tuple)
{
vtkIdType loc = i * this->NumberOfComponents;
for(int j=0; j < this->NumberOfComponents; ++j)
{
this->Array[loc+j] = tuple[j];
}
}
//----------------------------------------------------------------------------
// Insert (memory allocation performed) the tuple into the ith location
// in the array.
template <class T>
void vtkDataArrayTemplate<T>::InsertTuple(vtkIdType i, const float* tuple)
{
T* t = this->WritePointer(i*this->NumberOfComponents,
this->NumberOfComponents);
for(int j=0; j < this->NumberOfComponents; ++j)
{
*t++ = static_cast<T>(*tuple++);
}
}
template <class T>
void vtkDataArrayTemplate<T>::InsertTuple(vtkIdType i, const double* tuple)
{
T* t = this->WritePointer(i*this->NumberOfComponents,
this->NumberOfComponents);
for(int j=0; j < this->NumberOfComponents; ++j)
{
*t++ = static_cast<T>(*tuple++);
}
}
template <class T>
void vtkDataArrayTemplate<T>::InsertTupleValue(vtkIdType i, const T* tuple)
{
T* t = this->WritePointer(i*this->NumberOfComponents,
this->NumberOfComponents);
for(int j=0; j < this->NumberOfComponents; ++j)
{
*t++ = *tuple++;
}
}
//----------------------------------------------------------------------------
// Insert (memory allocation performed) the tuple onto the end of the array.
template <class T>
vtkIdType vtkDataArrayTemplate<T>::InsertNextTuple(const float* tuple)
{
T* t = this->WritePointer(this->MaxId + 1, this->NumberOfComponents);
for(int j=0; j < this->NumberOfComponents; ++j)
{
*t++ = static_cast<T>(*tuple++);
}
return this->MaxId / this->NumberOfComponents;
}
template <class T>
vtkIdType vtkDataArrayTemplate<T>::InsertNextTuple(const double* tuple)
{
T* t = this->WritePointer(this->MaxId + 1,this->NumberOfComponents);
for(int j=0; j < this->NumberOfComponents; ++j)
{
*t++ = static_cast<T>(*tuple++);
}
return this->MaxId / this->NumberOfComponents;
}
template <class T>
vtkIdType vtkDataArrayTemplate<T>::InsertNextTupleValue(const T* tuple)
{
T* t = this->WritePointer(this->MaxId + 1,this->NumberOfComponents);
for(int j=0; j < this->NumberOfComponents; ++j)
{
*t++ = *tuple++;
}
return this->MaxId / this->NumberOfComponents;
}
//----------------------------------------------------------------------------
// Return the data component at the ith tuple and jth component location.
// Note that i<NumberOfTuples and j<NumberOfComponents.
template <class T>
double vtkDataArrayTemplate<T>::GetComponent(vtkIdType i, int j)
{
return static_cast<double>(this->GetValue(i*this->NumberOfComponents + j));
}
//----------------------------------------------------------------------------
// Set the data component at the ith tuple and jth component location.
// Note that i<NumberOfTuples and j<NumberOfComponents. Make sure enough
// memory has been allocated (use SetNumberOfTuples() and
// SetNumberOfComponents()).
template <class T>
void vtkDataArrayTemplate<T>::SetComponent(vtkIdType i, int j,
double c)
{
this->SetValue(i*this->NumberOfComponents + j, static_cast<T>(c));
}
//----------------------------------------------------------------------------
template <class T>
void vtkDataArrayTemplate<T>::InsertComponent(vtkIdType i, int j,
double c)
{
this->InsertValue(i*this->NumberOfComponents + j, static_cast<T>(c));
}
//----------------------------------------------------------------------------
template <class T>
void vtkDataArrayTemplate<T>::SetNumberOfValues(vtkIdType number)
{
if(this->Allocate(number))
{
this->MaxId = number - 1;
}
}
//----------------------------------------------------------------------------
template <class T>
T* vtkDataArrayTemplate<T>::WritePointer(vtkIdType id,
vtkIdType number)
{
vtkIdType newSize=id+number;
if ( newSize > this->Size )
{
this->ResizeAndExtend(newSize);
}
if ( (--newSize) > this->MaxId )
{
this->MaxId = newSize;
}
return this->Array + id;
}
//----------------------------------------------------------------------------
template <class T>
void vtkDataArrayTemplate<T>::InsertValue(vtkIdType id, T f)
{
if ( id >= this->Size )
{
this->ResizeAndExtend(id+1);
}
this->Array[id] = f;
if ( id > this->MaxId )
{
this->MaxId = id;
}
}
//----------------------------------------------------------------------------
template <class T>
vtkIdType vtkDataArrayTemplate<T>::InsertNextValue(T f)
{
this->InsertValue (++this->MaxId,f);
return this->MaxId;
}
//----------------------------------------------------------------------------
template <class T>
void vtkDataArrayTemplate<T>::ComputeRange(int comp)
{
// If we got component -1 on a vector array, compute vector magnitude.
if(comp < 0 && this->NumberOfComponents == 1)
{
comp = 0;
}
// Choose index into component range cache.
int index = (comp<0)? this->NumberOfComponents : comp;
if(index >= VTK_MAXIMUM_NUMBER_OF_CACHED_COMPONENT_RANGES ||
(this->GetMTime() > this->ComponentRangeComputeTime[index]))
{
// We need to compute the range.
this->Range[0] = VTK_DOUBLE_MAX;
this->Range[1] = VTK_DOUBLE_MIN;
if(comp >= 0)
{
this->ComputeScalarRange(comp);
}
else
{
this->ComputeVectorRange();
}
// Store the result in the range cache if there is room.
if(index < VTK_MAXIMUM_NUMBER_OF_CACHED_COMPONENT_RANGES)
{
this->ComponentRangeComputeTime[index].Modified();
this->ComponentRange[index][0] = this->Range[0];
this->ComponentRange[index][1] = this->Range[1];
}
}
else
{
// Copy value from range cache entry for this component.
this->Range[0] = this->ComponentRange[index][0];
this->Range[1] = this->ComponentRange[index][1];
}
}
//----------------------------------------------------------------------------
template <class T>
void vtkDataArrayTemplate<T>::ComputeScalarRange(int comp)
{
// Compute range only if there are data.
T* begin = this->Array+comp;
T* end = this->Array+comp+this->MaxId+1;
if(begin == end)
{
return;
}
// Compute the range of scalar values.
int numComp = this->NumberOfComponents;
T range[2] = {*begin, *begin};
for(T* i = begin+numComp; i != end; i += numComp)
{
T s = *i;
if(s < range[0])
{
range[0] = s;
}
else if(s > range[1])
{
range[1] = s;
}
}
// Store the range.
this->Range[0] = range[0];
this->Range[1] = range[1];
}
//----------------------------------------------------------------------------
template <class T>
void vtkDataArrayTemplate<T>::ComputeVectorRange()
{
// Compute range only if there are data.
T* begin = this->Array;
T* end = this->Array+this->MaxId+1;
if(begin == end)
{
return;
}
// Compute the range of vector magnitude squared.
int numComp = this->NumberOfComponents;
double range[2] = {VTK_DOUBLE_MAX, VTK_DOUBLE_MIN};
for(T* i = begin; i != end; i += numComp)
{
double s = 0.0;
for(int j=0; j < numComp; ++j)
{
double t = i[j];
s += t*t;
}
if(s < range[0])
{
range[0] = s;
}
// this cannot be an elseif because there may be only one vector in which
// case the range[1] would be left at a bad value
if(s > range[1])
{
range[1] = s;
}
}
// Store the range of vector magnitude.
this->Range[0] = sqrt(range[0]);
this->Range[1] = sqrt(range[1]);
}
//----------------------------------------------------------------------------
template <class T>
void vtkDataArrayTemplate<T>::ExportToVoidPointer(void *out_ptr)
{
if(out_ptr && this->Array)
{
memcpy(static_cast<T*>(out_ptr), this->Array,
(this->MaxId + 1)*sizeof(T));
}
}
#endif
|