File: vtkMath.h

package info (click to toggle)
vtk 5.0.4-1.1
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 51,084 kB
  • ctags: 70,426
  • sloc: cpp: 524,166; ansic: 220,276; tcl: 43,377; python: 14,037; perl: 3,102; java: 1,436; yacc: 1,033; sh: 339; lex: 248; makefile: 197; asm: 154
file content (773 lines) | stat: -rw-r--r-- 30,843 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    $RCSfile: vtkMath.h,v $

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
// .NAME vtkMath - performs common math operations
// .SECTION Description
// vtkMath is provides methods to perform common math operations. These 
// include providing constants such as Pi; conversion from degrees to 
// radians; vector operations such as dot and cross products and vector 
// norm; matrix determinant for 2x2 and 3x3 matrices; and random 
// number generation.

#ifndef __vtkMath_h
#define __vtkMath_h

#include "vtkObject.h"

class vtkDataArray;

class VTK_COMMON_EXPORT vtkMath : public vtkObject
{
public:
  static vtkMath *New();
  vtkTypeRevisionMacro(vtkMath,vtkObject);
  void PrintSelf(ostream& os, vtkIndent indent);

  // Description:
  // Useful constants.
  static float Pi() {return 3.14159265358979f;};
  static float DegreesToRadians() {return 0.017453292f;};
  static float RadiansToDegrees() {return 57.2957795131f;};

  // Description:
  // Useful constants. (double-precision version)
  static double DoubleDegreesToRadians() {return 0.017453292519943295;};
  static double DoublePi() {return 3.1415926535897932384626;};
  static double DoubleRadiansToDegrees() {return 57.29577951308232;};

  // Description:
  // Rounds a float to the nearest integer.
  static int Round(float f) {
    return static_cast<int>(f + (f >= 0 ? 0.5 : -0.5)); }
  static int Round(double f) {
    return static_cast<int>(f + (f >= 0 ? 0.5 : -0.5)); }

  static int Floor(double x);
  
  // Description:
  // Dot product of two 3-vectors (float version).
  static float Dot(const float x[3], const float y[3]) {
    return (x[0]*y[0] + x[1]*y[1] + x[2]*y[2]);};

  // Description:
  // Dot product of two 3-vectors (double-precision version).
  static double Dot(const double x[3], const double y[3]) {
    return (x[0]*y[0] + x[1]*y[1] + x[2]*y[2]);};
  
  // Description:
  // Cross product of two 3-vectors. Result vector in z[3].
  static void Cross(const float x[3], const float y[3], float z[3]);

  // Description:
  // Cross product of two 3-vectors. Result vector in z[3]. (double-precision
  // version)
  static void Cross(const double x[3], const double y[3], double z[3]);

  // Description:
  // Compute the norm of n-vector.
  static float Norm(const float* x, int n); 
  static double Norm(const double* x, int n); 

  // Description:
  // Compute the norm of 3-vector.
  static float Norm(const float x[3]) {
    return static_cast<float> (sqrt(x[0]*x[0] + x[1]*x[1] + x[2]*x[2]));};
  
  // Description:
  // Compute the norm of 3-vector (double-precision version).
  static double Norm(const double x[3]) {
    return sqrt(x[0]*x[0] + x[1]*x[1] + x[2]*x[2]);};
  
  // Description:
  // Normalize (in place) a 3-vector. Returns norm of vector.
  static float Normalize(float x[3]);

  // Description:
  // Normalize (in place) a 3-vector. Returns norm of vector
  // (double-precision version).
  static double Normalize(double x[3]);

  // Description:
  // Given a unit vector x, find two unit vectors y and z such that 
  // x cross y = z (i.e. the vectors are perpendicular to each other).
  // There is an infinite number of such vectors, specify an angle theta 
  // to choose one set.  If you want only one perpendicular vector, 
  // specify NULL for z.
  static void Perpendiculars(const double x[3], double y[3], double z[3], 
                             double theta);
  static void Perpendiculars(const float x[3], float y[3], float z[3],
                             double theta);

  // Description:
  // Compute distance squared between two points.
  static float Distance2BetweenPoints(const float x[3], const float y[3]);

  // Description:
  // Compute distance squared between two points (double precision version).
  static double Distance2BetweenPoints(const double x[3], const double y[3]);

  // Description:
  // Dot product of two 2-vectors. The third (z) component is ignored.
  static float Dot2D(const float x[3], const float y[3]) {
    return (x[0]*y[0] + x[1]*y[1]);};
  
  // Description:
  // Dot product of two 2-vectors. The third (z) component is
  // ignored (double-precision version).
  static double Dot2D(const double x[3], const double y[3]) {
    return (x[0]*y[0] + x[1]*y[1]);};

  // Description:
  // Compute the norm of a 2-vector. Ignores z-component.
  static float Norm2D(const float x[3]) {
    return static_cast<float> (sqrt(x[0]*x[0] + x[1]*x[1]));};

  // Description:
  // Compute the norm of a 2-vector. Ignores z-component
  // (double-precision version).
  static double Norm2D(const double x[3]) {
    return sqrt(x[0]*x[0] + x[1]*x[1]);};

  // Description:
  // Normalize (in place) a 2-vector. Returns norm of vector. Ignores
  // z-component.
  static float Normalize2D(float x[3]);

  // Description:
  // Normalize (in place) a 2-vector. Returns norm of vector. Ignores
  // z-component (double-precision version).
  static double Normalize2D(double x[3]);

  // Description:
  // Compute determinant of 2x2 matrix. Two columns of matrix are input.
  static float Determinant2x2(const float c1[2], const float c2[2]) {
    return (c1[0]*c2[1] - c2[0]*c1[1]);};

  // Description:
  // Calculate the determinant of a 2x2 matrix: | a b | | c d |
  static double Determinant2x2(double a, double b, double c, double d) {
    return (a * d - b * c);};
  static double Determinant2x2(const double c1[2], const double c2[2]) {
    return (c1[0]*c2[1] - c2[0]*c1[1]);};

  // Description:
  // LU Factorization of a 3x3 matrix.  The diagonal elements are the
  // multiplicative inverse of those in the standard LU factorization.
  static void LUFactor3x3(float A[3][3], int index[3]);
  static void LUFactor3x3(double A[3][3], int index[3]);

  // Description:
  // LU back substitution for a 3x3 matrix.  The diagonal elements are the
  // multiplicative inverse of those in the standard LU factorization.
  static void LUSolve3x3(const float A[3][3], const int index[3], 
                         float x[3]);
  static void LUSolve3x3(const double A[3][3], const int index[3], 
                         double x[3]);

  // Description:
  // Solve Ay = x for y and place the result in y.  The matrix A is
  // destroyed in the process.
  static void LinearSolve3x3(const float A[3][3], const float x[3], 
                             float y[3]);
  static void LinearSolve3x3(const double A[3][3], const double x[3], 
                             double y[3]);

  // Description:
  // Multiply a vector by a 3x3 matrix.  The result is placed in out.
  static void Multiply3x3(const float A[3][3], const float in[3], 
                          float out[3]);
  static void Multiply3x3(const double A[3][3], const double in[3], 
                          double out[3]);
  
  // Description:
  // Multiply one 3x3 matrix by another according to C = AB.
  static void Multiply3x3(const float A[3][3], const float B[3][3], 
                          float C[3][3]);
  static void Multiply3x3(const double A[3][3], const double B[3][3], 
                          double C[3][3]);

  // Description:
  // Transpose a 3x3 matrix.
  static void Transpose3x3(const float A[3][3], float AT[3][3]);
  static void Transpose3x3(const double A[3][3], double AT[3][3]);

  // Description:
  // Invert a 3x3 matrix.
  static void Invert3x3(const float A[3][3], float AI[3][3]);
  static void Invert3x3(const double A[3][3], double AI[3][3]);

  // Description:
  // Set A to the identity matrix.
  static void Identity3x3(float A[3][3]);
  static void Identity3x3(double A[3][3]);

  // Description:
  // Return the determinant of a 3x3 matrix.
  static double Determinant3x3(float A[3][3]);
  static double Determinant3x3(double A[3][3]);

  // Description:
  // Compute determinant of 3x3 matrix. Three columns of matrix are input.
  static float Determinant3x3(const float c1[3], 
                              const float c2[3], 
                              const float c3[3]);

  // Description:
  // Compute determinant of 3x3 matrix. Three columns of matrix are input.
  static double Determinant3x3(const double c1[3], 
                               const double c2[3], 
                               const double c3[3]);

  // Description:
  // Calculate the determinant of a 3x3 matrix in the form:
  //     | a1,  b1,  c1 |
  //     | a2,  b2,  c2 |
  //     | a3,  b3,  c3 |
  static double Determinant3x3(double a1, double a2, double a3, 
                               double b1, double b2, double b3, 
                               double c1, double c2, double c3);

  // Description:
  // Convert a quaternion to a 3x3 rotation matrix.  The quaternion
  // does not have to be normalized beforehand.
  static void QuaternionToMatrix3x3(const float quat[4], float A[3][3]); 
  static void QuaternionToMatrix3x3(const double quat[4], double A[3][3]); 

  // Description:
  // Convert a 3x3 matrix into a quaternion.  This will provide the
  // best possible answer even if the matrix is not a pure rotation matrix.
  // The method used is that of B.K.P. Horn.
  static void Matrix3x3ToQuaternion(const float A[3][3], float quat[4]);
  static void Matrix3x3ToQuaternion(const double A[3][3], double quat[4]);
  
  // Description:
  // Orthogonalize a 3x3 matrix and put the result in B.  If matrix A
  // has a negative determinant, then B will be a rotation plus a flip
  // i.e. it will have a determinant of -1.
  static void Orthogonalize3x3(const float A[3][3], float B[3][3]);
  static void Orthogonalize3x3(const double A[3][3], double B[3][3]);

  // Description:
  // Diagonalize a symmetric 3x3 matrix and return the eigenvalues in
  // w and the eigenvectors in the columns of V.  The matrix V will 
  // have a positive determinant, and the three eigenvectors will be
  // aligned as closely as possible with the x, y, and z axes.
  static void Diagonalize3x3(const float A[3][3], float w[3], float V[3][3]);
  static void Diagonalize3x3(const double A[3][3],double w[3],double V[3][3]);

  // Description:
  // Perform singular value decomposition on a 3x3 matrix.  This is not
  // done using a conventional SVD algorithm, instead it is done using
  // Orthogonalize3x3 and Diagonalize3x3.  Both output matrices U and VT
  // will have positive determinants, and the w values will be arranged
  // such that the three rows of VT are aligned as closely as possible
  // with the x, y, and z axes respectively.  If the determinant of A is
  // negative, then the three w values will be negative.
  static void SingularValueDecomposition3x3(const float A[3][3],
                                            float U[3][3], float w[3],
                                            float VT[3][3]);
  static void SingularValueDecomposition3x3(const double A[3][3],
                                            double U[3][3], double w[3],
                                            double VT[3][3]);

  // Description:
  // Solve linear equations Ax = b using Crout's method. Input is square
  // matrix A and load vector x. Solution x is written over load vector. The
  // dimension of the matrix is specified in size. If error is found, method
  // returns a 0.
  static int SolveLinearSystem(double **A, double *x, int size);

  // Description:
  // Invert input square matrix A into matrix AI. 
  // Note that A is modified during
  // the inversion. The size variable is the dimension of the matrix. Returns 0
  // if inverse not computed.
  static int InvertMatrix(double **A, double **AI, int size);

  // Description:
  // Thread safe version of InvertMatrix method.
  // Working memory arrays tmp1SIze and tmp2Size
  // of length size must be passed in.
  static int InvertMatrix(double **A, double **AI, int size,
                          int *tmp1Size, double *tmp2Size);

  // Description:
  // Factor linear equations Ax = b using LU decomposition A = LU where L is
  // lower triangular matrix and U is upper triangular matrix. Input is 
  // square matrix A, integer array of pivot indices index[0->n-1], and size
  // of square matrix n. Output factorization LU is in matrix A. If error is 
  // found, method returns 0. 
  static int LUFactorLinearSystem(double **A, int *index, int size);

  // Description:
  // Thread safe version of LUFactorLinearSystem method.
  // Working memory array tmpSize of length size
  // must be passed in.
  static int LUFactorLinearSystem(double **A, int *index, int size,
                                  double *tmpSize);

  // Description:
  // Solve linear equations Ax = b using LU decomposition A = LU where L is
  // lower triangular matrix and U is upper triangular matrix. Input is 
  // factored matrix A=LU, integer array of pivot indices index[0->n-1],
  // load vector x[0->n-1], and size of square matrix n. Note that A=LU and
  // index[] are generated from method LUFactorLinearSystem). Also, solution
  // vector is written directly over input load vector.
  static void LUSolveLinearSystem(double **A, int *index, 
                                  double *x, int size);

  // Description:
  // Estimate the condition number of a LU factored matrix. Used to judge the
  // accuracy of the solution. The matrix A must have been previously factored
  // using the method LUFactorLinearSystem. The condition number is the ratio
  // of the infinity matrix norm (i.e., maximum value of matrix component)
  // divided by the minimum diagonal value. (This works for triangular matrices
  // only: see Conte and de Boor, Elementary Numerical Analysis.)
  static double EstimateMatrixCondition(double **A, int size);

  // Description:
  // Initialize seed value. NOTE: Random() has the bad property that 
  // the first random number returned after RandomSeed() is called 
  // is proportional to the seed value! To help solve this, call 
  // RandomSeed() a few times inside seed. This doesn't ruin the 
  // repeatability of Random().
  static void RandomSeed(long s);  

  // Description:
  // Generate random numbers between 0.0 and 1.0.
  // This is used to provide portability across different systems.
  static double Random();  

  // Description:
  // Generate random number between (min,max).
  static double Random(double min, double max);

  // Description:
  // Jacobi iteration for the solution of eigenvectors/eigenvalues of a 3x3
  // real symmetric matrix. Square 3x3 matrix a; output eigenvalues in w;
  // and output eigenvectors in v. Resulting eigenvalues/vectors are sorted
  // in decreasing order; eigenvectors are normalized.
  static int Jacobi(float **a, float *w, float **v);
  static int Jacobi(double **a, double *w, double **v);

  // Description:
  // JacobiN iteration for the solution of eigenvectors/eigenvalues of a nxn
  // real symmetric matrix. Square nxn matrix a; size of matrix in n; output
  // eigenvalues in w; and output eigenvectors in v. Resulting
  // eigenvalues/vectors are sorted in decreasing order; eigenvectors are
  // normalized.  w and v need to be allocated previously
  static int JacobiN(float **a, int n, float *w, float **v);
  static int JacobiN(double **a, int n, double *w, double **v);

  // Description:
  // Solves a cubic equation c0*t^3 + c1*t^2 + c2*t + c3 = 0 when c0, c1, c2,
  // and c3 are REAL.  Solution is motivated by Numerical Recipes In C 2nd
  // Ed.  Return array contains number of (real) roots (counting multiple
  // roots as one) followed by roots themselves. The value in roots[4] is a
  // integer giving further information about the roots (see return codes for
  // int SolveCubic()).
  static double* SolveCubic(double c0, double c1, double c2, double c3);

  // Description:
  // Solves a quadratic equation c1*t^2 + c2*t + c3 = 0 when c1, c2, and c3
  // are REAL.  Solution is motivated by Numerical Recipes In C 2nd Ed.
  // Return array contains number of (real) roots (counting multiple roots as
  // one) followed by roots themselves. Note that roots[3] contains a return
  // code further describing solution - see documentation for SolveCubic()
  // for meaning of return codes.
  static double* SolveQuadratic(double c0, double c1, double c2);

  // Description:
  // Solves a linear equation c2*t  + c3 = 0 when c2 and c3 are REAL.
  // Solution is motivated by Numerical Recipes In C 2nd Ed.
  // Return array contains number of roots followed by roots themselves.
  static double* SolveLinear(double c0, double c1);

  // Description:
  // Solves a cubic equation when c0, c1, c2, And c3 Are REAL.  Solution
  // is motivated by Numerical Recipes In C 2nd Ed.  Roots and number of
  // real roots are stored in user provided variables r1, r2, r3, and
  // num_roots. Note that the function can return the following integer
  // values describing the roots: (0)-no solution; (-1)-infinite number
  // of solutions; (1)-one distinct real root of multiplicity 3 (stored
  // in r1); (2)-two distinct real roots, one of multiplicity 2 (stored
  // in r1 & r2); (3)-three distinct real roots; (-2)-quadratic equation
  // with complex conjugate solution (real part of root returned in r1,
  // imaginary in r2); (-3)-one real root and a complex conjugate pair
  // (real root in r1 and real part of pair in r2 and imaginary in r3).
  static int SolveCubic(double c0, double c1, double c2, double c3, 
                        double *r1, double *r2, double *r3, int *num_roots);

  // Description:
  // Solves A Quadratic Equation c1*t^2  + c2*t  + c3 = 0 when 
  // c1, c2, and c3 are REAL.
  // Solution is motivated by Numerical Recipes In C 2nd Ed.
  // Roots and number of roots are stored in user provided variables
  // r1, r2, num_roots
  static int SolveQuadratic(double c0, double c1, double c2, 
                            double *r1, double *r2, int *num_roots);
  
  // Description:
  // Solves a linear equation c2*t + c3 = 0 when c2 and c3 are REAL.
  // Solution is motivated by Numerical Recipes In C 2nd Ed.
  // Root and number of (real) roots are stored in user provided variables
  // r2 and num_roots.
  static int SolveLinear(double c0, double c1, double *r1, int *num_roots);

  // Description:
  // Solves for the least squares best fit matrix for the homogeneous equation X'M' = 0'.
  // Uses the method described on pages 40-41 of Computer Vision by 
  // Forsyth and Ponce, which is that the solution is the eigenvector 
  // associated with the minimum eigenvalue of T(X)X, where T(X) is the
  // transpose of X.
  // The inputs and output are transposed matrices.
  //    Dimensions: X' is numberOfSamples by xOrder,
  //                M' dimension is xOrder by yOrder.
  // M' should be pre-allocated. All matrices are row major. The resultant
  // matrix M' should be pre-multiplied to X' to get 0', or transposed and
  // then post multiplied to X to get 0
  static int SolveHomogeneousLeastSquares(int numberOfSamples, double **xt, int xOrder,
                                double **mt);


  // Description:
  // Solves for the least squares best fit matrix for the equation X'M' = Y'.
  // Uses pseudoinverse to get the ordinary least squares. 
  // The inputs and output are transposed matrices.
  //    Dimensions: X' is numberOfSamples by xOrder,
  //                Y' is numberOfSamples by yOrder,
  //                M' dimension is xOrder by yOrder.
  // M' should be pre-allocated. All matrices are row major. The resultant
  // matrix M' should be pre-multiplied to X' to get Y', or transposed and
  // then post multiplied to X to get Y
  // By default, this method checks for the homogeneous condition where Y==0, and
  // if so, invokes SolveHomogeneousLeastSquares. For better performance when
  // the system is known not to be homogeneous, invoke with checkHomogeneous=0.
  static int SolveLeastSquares(int numberOfSamples, double **xt, int xOrder,
                               double **yt, int yOrder, double **mt, int checkHomogeneous=1);

  // Description:
  // Convert color in RGB format (Red, Green, Blue) to HSV format
  // (Hue, Saturation, Value). The input color is not modified.
  static void RGBToHSV(float rgb[3], float hsv[3])
    { RGBToHSV(rgb[0], rgb[1], rgb[2], hsv, hsv+1, hsv+2); }
  static void RGBToHSV(float r, float g, float b, float *h, float *s, float *v);
  static double* RGBToHSV(double rgb[3]);
  static double* RGBToHSV(double r, double g, double b);
  static void RGBToHSV(double rgb[3], double hsv[3])
    { RGBToHSV(rgb[0], rgb[1], rgb[2], hsv, hsv+1, hsv+2); }
  static void RGBToHSV(double r, double g, double b, double *h, double *s, double *v);

  // Description:
  // Convert color in HSV format (Hue, Saturation, Value) to RGB
  // format (Red, Green, Blue). The input color is not modified.
  static void HSVToRGB(float hsv[3], float rgb[3])
    { HSVToRGB(hsv[0], hsv[1], hsv[2], rgb, rgb+1, rgb+2); }
  static void HSVToRGB(float h, float s, float v, float *r, float *g, float *b);
  static double* HSVToRGB(double hsv[3]);
  static double* HSVToRGB(double h, double s, double v);
  static void HSVToRGB(double hsv[3], double rgb[3])
    { HSVToRGB(hsv[0], hsv[1], hsv[2], rgb, rgb+1, rgb+2); }
  static void HSVToRGB(double h, double s, double v, double *r, double *g, double *b);

  // Description:
  // Convert color from Lab to XYZ system, and vice-versa
  static void LabToXYZ(double lab[3], double xyz[3]);
  static void XYZToRGB(double xyz[3], double rgb[3]);

  // Description:
  // Set the bounds to an uninitialized state
  static void UninitializeBounds(double bounds[6]){
    bounds[0] = 1.0;
    bounds[1] = -1.0;
    bounds[2] = 1.0;
    bounds[3] = -1.0;
    bounds[4] = 1.0;
    bounds[5] = -1.0;
  }
  
  // Description:
  // Are the bounds initialized?
  static int AreBoundsInitialized(double bounds[6]){
    if (bounds[1]-bounds[0]<0.0)
      {
      return 0;
      }
    return 1;
  }

  // Description:
  // Clamp some values against a range
  // The method without 'clamped_values' will perform in-place clamping.
  static void ClampValue(double *value, const double range[2]);
  static void ClampValue(double value, const double range[2], double *clamped_value);
  static void ClampValues(
    double *values, int nb_values, const double range[2]);
  static void ClampValues(
    const double *values, int nb_values, const double range[2], double *clamped_values);

  // Description:
  // Return the scalar type that is most likely to have enough precision 
  // to store a given range of data once it has been scaled and shifted 
  // (i.e. [range_min * scale + shift, range_max * scale + shift]. 
  // If any one of the parameters is not an integer number (decimal part != 0),
  // the search will default to float types only (float or double)
  // Return -1 on error or no scalar type found.
  static int GetScalarTypeFittingRange(
    double range_min, double range_max, 
    double scale = 1.0, double shift = 0.0);

  // Description:
  // Get a vtkDataArray's scalar range for a given component. 
  // If the vtkDataArray's data type is unsigned char (VTK_UNSIGNED_CHAR)
  // the range is adjusted to the whole data type range [0, 255.0]. 
  // Same goes for unsigned short (VTK_UNSIGNED_SHORT) but the upper bound 
  // is also adjusted down to 4095.0 if was between ]255, 4095.0].
  // Return 1 on success, 0 otherwise.
  static int GetAdjustedScalarRange(
    vtkDataArray *array, int comp, double range[2]);
 
  // Description:
  // Return true if first 3D extent is within second 3D extent
  // Extent is x-min, x-max, y-min, y-max, z-min, z-max
  static int ExtentIsWithinOtherExtent(int extent1[6], int extent2[6]);
  
  // Description:
  // Return true if first 3D bounds is within the second 3D bounds
  // Bounds is x-min, x-max, y-min, y-max, z-min, z-max
  // Delta is the error margin along each axis (usually a small number)
  static int BoundsIsWithinOtherBounds(double bounds1[6], double bounds2[6], double delta[3]);
  
  // Description:
  // Return true if point is within the given 3D bounds
  // Bounds is x-min, x-max, y-min, y-max, z-min, z-max
  // Delta is the error margin along each axis (usually a small number)
  static int PointIsWithinBounds(double point[3], double bounds[6], double delta[3]);
  

protected:
  vtkMath() {};
  ~vtkMath() {};
  
  static long Seed;
private:
  vtkMath(const vtkMath&);  // Not implemented.
  void operator=(const vtkMath&);  // Not implemented.
};

//----------------------------------------------------------------------------
inline int vtkMath::Floor(double x)
{
#if defined i386 || defined _M_IX86
  union { int i[2]; double d; } u;
  // use 52-bit precision of IEEE double to round (x - 0.25) to 
  // the nearest multiple of 0.5, according to prevailing rounding
  // mode which is IEEE round-to-nearest,even
  u.d = (x - 0.25) + 3377699720527872.0; // (2**51)*1.5
  // extract mantissa, use shift to divide by 2 and hence get rid
  // of the bit that gets messed up because the FPU uses
  // round-to-nearest,even mode instead of round-to-nearest,+infinity
  return u.i[0] >> 1;
#else
  return (int)floor(x);
#endif
}

//----------------------------------------------------------------------------
inline float vtkMath::Normalize(float x[3])
{
  float den; 
  if ( (den = vtkMath::Norm(x)) != 0.0 )
    {
    for (int i=0; i < 3; i++)
      {
      x[i] /= den;
      }
    }
  return den;
}

//----------------------------------------------------------------------------
inline double vtkMath::Normalize(double x[3])
{
  double den; 
  if ( (den = vtkMath::Norm(x)) != 0.0 )
    {
    for (int i=0; i < 3; i++)
      {
      x[i] /= den;
      }
    }
  return den;
}

//----------------------------------------------------------------------------
inline float vtkMath::Normalize2D(float x[3])
{
  float den; 
  if ( (den = vtkMath::Norm2D(x)) != 0.0 )
    {
    for (int i=0; i < 2; i++)
      {
      x[i] /= den;
      }
    }
  return den;
}

//----------------------------------------------------------------------------
inline double vtkMath::Normalize2D(double x[3])
{
  double den; 
  if ( (den = vtkMath::Norm2D(x)) != 0.0 )
    {
    for (int i=0; i < 2; i++)
      {
      x[i] /= den;
      }
    }
  return den;
}

//----------------------------------------------------------------------------
inline float vtkMath::Determinant3x3(const float c1[3], 
                                     const float c2[3], 
                                     const float c3[3])
{
  return c1[0]*c2[1]*c3[2] + c2[0]*c3[1]*c1[2] + c3[0]*c1[1]*c2[2] -
         c1[0]*c3[1]*c2[2] - c2[0]*c1[1]*c3[2] - c3[0]*c2[1]*c1[2];
}

//----------------------------------------------------------------------------
inline double vtkMath::Determinant3x3(const double c1[3], 
                                      const double c2[3], 
                                      const double c3[3])
{
  return c1[0]*c2[1]*c3[2] + c2[0]*c3[1]*c1[2] + c3[0]*c1[1]*c2[2] -
         c1[0]*c3[1]*c2[2] - c2[0]*c1[1]*c3[2] - c3[0]*c2[1]*c1[2];
}

//----------------------------------------------------------------------------
inline double vtkMath::Determinant3x3(double a1, double a2, double a3, 
                                      double b1, double b2, double b3, 
                                      double c1, double c2, double c3)
{
    return ( a1 * vtkMath::Determinant2x2( b2, b3, c2, c3 )
           - b1 * vtkMath::Determinant2x2( a2, a3, c2, c3 )
           + c1 * vtkMath::Determinant2x2( a2, a3, b2, b3 ) );
}

//----------------------------------------------------------------------------
inline float vtkMath::Distance2BetweenPoints(const float x[3], 
                                             const float y[3])
{
  return ((x[0]-y[0])*(x[0]-y[0]) + (x[1]-y[1])*(x[1]-y[1]) +
          (x[2]-y[2])*(x[2]-y[2]));
}

//----------------------------------------------------------------------------
inline double vtkMath::Distance2BetweenPoints(const double x[3], 
                                              const double y[3])
{
  return ((x[0]-y[0])*(x[0]-y[0]) + (x[1]-y[1])*(x[1]-y[1]) +
          (x[2]-y[2])*(x[2]-y[2]));
}

//----------------------------------------------------------------------------
inline double vtkMath::Random(double min, double max)
{
  return (min + vtkMath::Random()*(max-min));
}

//----------------------------------------------------------------------------
// Cross product of two 3-vectors. Result vector in z[3].
inline void vtkMath::Cross(const float x[3], const float y[3], float z[3])
{
  float Zx = x[1]*y[2] - x[2]*y[1]; 
  float Zy = x[2]*y[0] - x[0]*y[2];
  float Zz = x[0]*y[1] - x[1]*y[0];
  z[0] = Zx; z[1] = Zy; z[2] = Zz; 
}

//----------------------------------------------------------------------------
// Cross product of two 3-vectors. Result vector in z[3].
inline void vtkMath::Cross(const double x[3], const double y[3], double z[3])
{
  double Zx = x[1]*y[2] - x[2]*y[1]; 
  double Zy = x[2]*y[0] - x[0]*y[2];
  double Zz = x[0]*y[1] - x[1]*y[0];
  z[0] = Zx; z[1] = Zy; z[2] = Zz; 
}

//BTX
//----------------------------------------------------------------------------
template<class T>
inline double vtkDeterminant3x3(T A[3][3])
{
  return A[0][0]*A[1][1]*A[2][2] + A[1][0]*A[2][1]*A[0][2] + 
         A[2][0]*A[0][1]*A[1][2] - A[0][0]*A[2][1]*A[1][2] - 
         A[1][0]*A[0][1]*A[2][2] - A[2][0]*A[1][1]*A[0][2];
}
//ETX

//----------------------------------------------------------------------------
inline double vtkMath::Determinant3x3(float A[3][3])
{
  return vtkDeterminant3x3(A);
}

//----------------------------------------------------------------------------
inline double vtkMath::Determinant3x3(double A[3][3])
{
  return vtkDeterminant3x3(A);
}

//----------------------------------------------------------------------------
inline void vtkMath::ClampValue(double *value, const double range[2])
{
  if (value && range)
    {
    if (*value < range[0])
      {
      *value = range[0];
      }
    else if (*value > range[1])
      {
      *value = range[1];
      }
    }
}

//----------------------------------------------------------------------------
inline void vtkMath::ClampValue(
  double value, const double range[2], double *clamped_value)
{
  if (range && clamped_value)
    {
    if (value < range[0])
      {
      *clamped_value = range[0];
      }
    else if (value > range[1])
      {
      *clamped_value = range[1];
      }
    else
      {
      *clamped_value = value;
      }
    }
}

#endif