1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
|
/*=========================================================================
Program: Visualization Toolkit
Module: $RCSfile: vtkMath.h,v $
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
// .NAME vtkMath - performs common math operations
// .SECTION Description
// vtkMath is provides methods to perform common math operations. These
// include providing constants such as Pi; conversion from degrees to
// radians; vector operations such as dot and cross products and vector
// norm; matrix determinant for 2x2 and 3x3 matrices; and random
// number generation.
#ifndef __vtkMath_h
#define __vtkMath_h
#include "vtkObject.h"
class vtkDataArray;
class VTK_COMMON_EXPORT vtkMath : public vtkObject
{
public:
static vtkMath *New();
vtkTypeRevisionMacro(vtkMath,vtkObject);
void PrintSelf(ostream& os, vtkIndent indent);
// Description:
// Useful constants.
static float Pi() {return 3.14159265358979f;};
static float DegreesToRadians() {return 0.017453292f;};
static float RadiansToDegrees() {return 57.2957795131f;};
// Description:
// Useful constants. (double-precision version)
static double DoubleDegreesToRadians() {return 0.017453292519943295;};
static double DoublePi() {return 3.1415926535897932384626;};
static double DoubleRadiansToDegrees() {return 57.29577951308232;};
// Description:
// Rounds a float to the nearest integer.
static int Round(float f) {
return static_cast<int>(f + (f >= 0 ? 0.5 : -0.5)); }
static int Round(double f) {
return static_cast<int>(f + (f >= 0 ? 0.5 : -0.5)); }
static int Floor(double x);
// Description:
// Dot product of two 3-vectors (float version).
static float Dot(const float x[3], const float y[3]) {
return (x[0]*y[0] + x[1]*y[1] + x[2]*y[2]);};
// Description:
// Dot product of two 3-vectors (double-precision version).
static double Dot(const double x[3], const double y[3]) {
return (x[0]*y[0] + x[1]*y[1] + x[2]*y[2]);};
// Description:
// Cross product of two 3-vectors. Result vector in z[3].
static void Cross(const float x[3], const float y[3], float z[3]);
// Description:
// Cross product of two 3-vectors. Result vector in z[3]. (double-precision
// version)
static void Cross(const double x[3], const double y[3], double z[3]);
// Description:
// Compute the norm of n-vector.
static float Norm(const float* x, int n);
static double Norm(const double* x, int n);
// Description:
// Compute the norm of 3-vector.
static float Norm(const float x[3]) {
return static_cast<float> (sqrt(x[0]*x[0] + x[1]*x[1] + x[2]*x[2]));};
// Description:
// Compute the norm of 3-vector (double-precision version).
static double Norm(const double x[3]) {
return sqrt(x[0]*x[0] + x[1]*x[1] + x[2]*x[2]);};
// Description:
// Normalize (in place) a 3-vector. Returns norm of vector.
static float Normalize(float x[3]);
// Description:
// Normalize (in place) a 3-vector. Returns norm of vector
// (double-precision version).
static double Normalize(double x[3]);
// Description:
// Given a unit vector x, find two unit vectors y and z such that
// x cross y = z (i.e. the vectors are perpendicular to each other).
// There is an infinite number of such vectors, specify an angle theta
// to choose one set. If you want only one perpendicular vector,
// specify NULL for z.
static void Perpendiculars(const double x[3], double y[3], double z[3],
double theta);
static void Perpendiculars(const float x[3], float y[3], float z[3],
double theta);
// Description:
// Compute distance squared between two points.
static float Distance2BetweenPoints(const float x[3], const float y[3]);
// Description:
// Compute distance squared between two points (double precision version).
static double Distance2BetweenPoints(const double x[3], const double y[3]);
// Description:
// Dot product of two 2-vectors. The third (z) component is ignored.
static float Dot2D(const float x[3], const float y[3]) {
return (x[0]*y[0] + x[1]*y[1]);};
// Description:
// Dot product of two 2-vectors. The third (z) component is
// ignored (double-precision version).
static double Dot2D(const double x[3], const double y[3]) {
return (x[0]*y[0] + x[1]*y[1]);};
// Description:
// Compute the norm of a 2-vector. Ignores z-component.
static float Norm2D(const float x[3]) {
return static_cast<float> (sqrt(x[0]*x[0] + x[1]*x[1]));};
// Description:
// Compute the norm of a 2-vector. Ignores z-component
// (double-precision version).
static double Norm2D(const double x[3]) {
return sqrt(x[0]*x[0] + x[1]*x[1]);};
// Description:
// Normalize (in place) a 2-vector. Returns norm of vector. Ignores
// z-component.
static float Normalize2D(float x[3]);
// Description:
// Normalize (in place) a 2-vector. Returns norm of vector. Ignores
// z-component (double-precision version).
static double Normalize2D(double x[3]);
// Description:
// Compute determinant of 2x2 matrix. Two columns of matrix are input.
static float Determinant2x2(const float c1[2], const float c2[2]) {
return (c1[0]*c2[1] - c2[0]*c1[1]);};
// Description:
// Calculate the determinant of a 2x2 matrix: | a b | | c d |
static double Determinant2x2(double a, double b, double c, double d) {
return (a * d - b * c);};
static double Determinant2x2(const double c1[2], const double c2[2]) {
return (c1[0]*c2[1] - c2[0]*c1[1]);};
// Description:
// LU Factorization of a 3x3 matrix. The diagonal elements are the
// multiplicative inverse of those in the standard LU factorization.
static void LUFactor3x3(float A[3][3], int index[3]);
static void LUFactor3x3(double A[3][3], int index[3]);
// Description:
// LU back substitution for a 3x3 matrix. The diagonal elements are the
// multiplicative inverse of those in the standard LU factorization.
static void LUSolve3x3(const float A[3][3], const int index[3],
float x[3]);
static void LUSolve3x3(const double A[3][3], const int index[3],
double x[3]);
// Description:
// Solve Ay = x for y and place the result in y. The matrix A is
// destroyed in the process.
static void LinearSolve3x3(const float A[3][3], const float x[3],
float y[3]);
static void LinearSolve3x3(const double A[3][3], const double x[3],
double y[3]);
// Description:
// Multiply a vector by a 3x3 matrix. The result is placed in out.
static void Multiply3x3(const float A[3][3], const float in[3],
float out[3]);
static void Multiply3x3(const double A[3][3], const double in[3],
double out[3]);
// Description:
// Multiply one 3x3 matrix by another according to C = AB.
static void Multiply3x3(const float A[3][3], const float B[3][3],
float C[3][3]);
static void Multiply3x3(const double A[3][3], const double B[3][3],
double C[3][3]);
// Description:
// Transpose a 3x3 matrix.
static void Transpose3x3(const float A[3][3], float AT[3][3]);
static void Transpose3x3(const double A[3][3], double AT[3][3]);
// Description:
// Invert a 3x3 matrix.
static void Invert3x3(const float A[3][3], float AI[3][3]);
static void Invert3x3(const double A[3][3], double AI[3][3]);
// Description:
// Set A to the identity matrix.
static void Identity3x3(float A[3][3]);
static void Identity3x3(double A[3][3]);
// Description:
// Return the determinant of a 3x3 matrix.
static double Determinant3x3(float A[3][3]);
static double Determinant3x3(double A[3][3]);
// Description:
// Compute determinant of 3x3 matrix. Three columns of matrix are input.
static float Determinant3x3(const float c1[3],
const float c2[3],
const float c3[3]);
// Description:
// Compute determinant of 3x3 matrix. Three columns of matrix are input.
static double Determinant3x3(const double c1[3],
const double c2[3],
const double c3[3]);
// Description:
// Calculate the determinant of a 3x3 matrix in the form:
// | a1, b1, c1 |
// | a2, b2, c2 |
// | a3, b3, c3 |
static double Determinant3x3(double a1, double a2, double a3,
double b1, double b2, double b3,
double c1, double c2, double c3);
// Description:
// Convert a quaternion to a 3x3 rotation matrix. The quaternion
// does not have to be normalized beforehand.
static void QuaternionToMatrix3x3(const float quat[4], float A[3][3]);
static void QuaternionToMatrix3x3(const double quat[4], double A[3][3]);
// Description:
// Convert a 3x3 matrix into a quaternion. This will provide the
// best possible answer even if the matrix is not a pure rotation matrix.
// The method used is that of B.K.P. Horn.
static void Matrix3x3ToQuaternion(const float A[3][3], float quat[4]);
static void Matrix3x3ToQuaternion(const double A[3][3], double quat[4]);
// Description:
// Orthogonalize a 3x3 matrix and put the result in B. If matrix A
// has a negative determinant, then B will be a rotation plus a flip
// i.e. it will have a determinant of -1.
static void Orthogonalize3x3(const float A[3][3], float B[3][3]);
static void Orthogonalize3x3(const double A[3][3], double B[3][3]);
// Description:
// Diagonalize a symmetric 3x3 matrix and return the eigenvalues in
// w and the eigenvectors in the columns of V. The matrix V will
// have a positive determinant, and the three eigenvectors will be
// aligned as closely as possible with the x, y, and z axes.
static void Diagonalize3x3(const float A[3][3], float w[3], float V[3][3]);
static void Diagonalize3x3(const double A[3][3],double w[3],double V[3][3]);
// Description:
// Perform singular value decomposition on a 3x3 matrix. This is not
// done using a conventional SVD algorithm, instead it is done using
// Orthogonalize3x3 and Diagonalize3x3. Both output matrices U and VT
// will have positive determinants, and the w values will be arranged
// such that the three rows of VT are aligned as closely as possible
// with the x, y, and z axes respectively. If the determinant of A is
// negative, then the three w values will be negative.
static void SingularValueDecomposition3x3(const float A[3][3],
float U[3][3], float w[3],
float VT[3][3]);
static void SingularValueDecomposition3x3(const double A[3][3],
double U[3][3], double w[3],
double VT[3][3]);
// Description:
// Solve linear equations Ax = b using Crout's method. Input is square
// matrix A and load vector x. Solution x is written over load vector. The
// dimension of the matrix is specified in size. If error is found, method
// returns a 0.
static int SolveLinearSystem(double **A, double *x, int size);
// Description:
// Invert input square matrix A into matrix AI.
// Note that A is modified during
// the inversion. The size variable is the dimension of the matrix. Returns 0
// if inverse not computed.
static int InvertMatrix(double **A, double **AI, int size);
// Description:
// Thread safe version of InvertMatrix method.
// Working memory arrays tmp1SIze and tmp2Size
// of length size must be passed in.
static int InvertMatrix(double **A, double **AI, int size,
int *tmp1Size, double *tmp2Size);
// Description:
// Factor linear equations Ax = b using LU decomposition A = LU where L is
// lower triangular matrix and U is upper triangular matrix. Input is
// square matrix A, integer array of pivot indices index[0->n-1], and size
// of square matrix n. Output factorization LU is in matrix A. If error is
// found, method returns 0.
static int LUFactorLinearSystem(double **A, int *index, int size);
// Description:
// Thread safe version of LUFactorLinearSystem method.
// Working memory array tmpSize of length size
// must be passed in.
static int LUFactorLinearSystem(double **A, int *index, int size,
double *tmpSize);
// Description:
// Solve linear equations Ax = b using LU decomposition A = LU where L is
// lower triangular matrix and U is upper triangular matrix. Input is
// factored matrix A=LU, integer array of pivot indices index[0->n-1],
// load vector x[0->n-1], and size of square matrix n. Note that A=LU and
// index[] are generated from method LUFactorLinearSystem). Also, solution
// vector is written directly over input load vector.
static void LUSolveLinearSystem(double **A, int *index,
double *x, int size);
// Description:
// Estimate the condition number of a LU factored matrix. Used to judge the
// accuracy of the solution. The matrix A must have been previously factored
// using the method LUFactorLinearSystem. The condition number is the ratio
// of the infinity matrix norm (i.e., maximum value of matrix component)
// divided by the minimum diagonal value. (This works for triangular matrices
// only: see Conte and de Boor, Elementary Numerical Analysis.)
static double EstimateMatrixCondition(double **A, int size);
// Description:
// Initialize seed value. NOTE: Random() has the bad property that
// the first random number returned after RandomSeed() is called
// is proportional to the seed value! To help solve this, call
// RandomSeed() a few times inside seed. This doesn't ruin the
// repeatability of Random().
static void RandomSeed(long s);
// Description:
// Generate random numbers between 0.0 and 1.0.
// This is used to provide portability across different systems.
static double Random();
// Description:
// Generate random number between (min,max).
static double Random(double min, double max);
// Description:
// Jacobi iteration for the solution of eigenvectors/eigenvalues of a 3x3
// real symmetric matrix. Square 3x3 matrix a; output eigenvalues in w;
// and output eigenvectors in v. Resulting eigenvalues/vectors are sorted
// in decreasing order; eigenvectors are normalized.
static int Jacobi(float **a, float *w, float **v);
static int Jacobi(double **a, double *w, double **v);
// Description:
// JacobiN iteration for the solution of eigenvectors/eigenvalues of a nxn
// real symmetric matrix. Square nxn matrix a; size of matrix in n; output
// eigenvalues in w; and output eigenvectors in v. Resulting
// eigenvalues/vectors are sorted in decreasing order; eigenvectors are
// normalized. w and v need to be allocated previously
static int JacobiN(float **a, int n, float *w, float **v);
static int JacobiN(double **a, int n, double *w, double **v);
// Description:
// Solves a cubic equation c0*t^3 + c1*t^2 + c2*t + c3 = 0 when c0, c1, c2,
// and c3 are REAL. Solution is motivated by Numerical Recipes In C 2nd
// Ed. Return array contains number of (real) roots (counting multiple
// roots as one) followed by roots themselves. The value in roots[4] is a
// integer giving further information about the roots (see return codes for
// int SolveCubic()).
static double* SolveCubic(double c0, double c1, double c2, double c3);
// Description:
// Solves a quadratic equation c1*t^2 + c2*t + c3 = 0 when c1, c2, and c3
// are REAL. Solution is motivated by Numerical Recipes In C 2nd Ed.
// Return array contains number of (real) roots (counting multiple roots as
// one) followed by roots themselves. Note that roots[3] contains a return
// code further describing solution - see documentation for SolveCubic()
// for meaning of return codes.
static double* SolveQuadratic(double c0, double c1, double c2);
// Description:
// Solves a linear equation c2*t + c3 = 0 when c2 and c3 are REAL.
// Solution is motivated by Numerical Recipes In C 2nd Ed.
// Return array contains number of roots followed by roots themselves.
static double* SolveLinear(double c0, double c1);
// Description:
// Solves a cubic equation when c0, c1, c2, And c3 Are REAL. Solution
// is motivated by Numerical Recipes In C 2nd Ed. Roots and number of
// real roots are stored in user provided variables r1, r2, r3, and
// num_roots. Note that the function can return the following integer
// values describing the roots: (0)-no solution; (-1)-infinite number
// of solutions; (1)-one distinct real root of multiplicity 3 (stored
// in r1); (2)-two distinct real roots, one of multiplicity 2 (stored
// in r1 & r2); (3)-three distinct real roots; (-2)-quadratic equation
// with complex conjugate solution (real part of root returned in r1,
// imaginary in r2); (-3)-one real root and a complex conjugate pair
// (real root in r1 and real part of pair in r2 and imaginary in r3).
static int SolveCubic(double c0, double c1, double c2, double c3,
double *r1, double *r2, double *r3, int *num_roots);
// Description:
// Solves A Quadratic Equation c1*t^2 + c2*t + c3 = 0 when
// c1, c2, and c3 are REAL.
// Solution is motivated by Numerical Recipes In C 2nd Ed.
// Roots and number of roots are stored in user provided variables
// r1, r2, num_roots
static int SolveQuadratic(double c0, double c1, double c2,
double *r1, double *r2, int *num_roots);
// Description:
// Solves a linear equation c2*t + c3 = 0 when c2 and c3 are REAL.
// Solution is motivated by Numerical Recipes In C 2nd Ed.
// Root and number of (real) roots are stored in user provided variables
// r2 and num_roots.
static int SolveLinear(double c0, double c1, double *r1, int *num_roots);
// Description:
// Solves for the least squares best fit matrix for the homogeneous equation X'M' = 0'.
// Uses the method described on pages 40-41 of Computer Vision by
// Forsyth and Ponce, which is that the solution is the eigenvector
// associated with the minimum eigenvalue of T(X)X, where T(X) is the
// transpose of X.
// The inputs and output are transposed matrices.
// Dimensions: X' is numberOfSamples by xOrder,
// M' dimension is xOrder by yOrder.
// M' should be pre-allocated. All matrices are row major. The resultant
// matrix M' should be pre-multiplied to X' to get 0', or transposed and
// then post multiplied to X to get 0
static int SolveHomogeneousLeastSquares(int numberOfSamples, double **xt, int xOrder,
double **mt);
// Description:
// Solves for the least squares best fit matrix for the equation X'M' = Y'.
// Uses pseudoinverse to get the ordinary least squares.
// The inputs and output are transposed matrices.
// Dimensions: X' is numberOfSamples by xOrder,
// Y' is numberOfSamples by yOrder,
// M' dimension is xOrder by yOrder.
// M' should be pre-allocated. All matrices are row major. The resultant
// matrix M' should be pre-multiplied to X' to get Y', or transposed and
// then post multiplied to X to get Y
// By default, this method checks for the homogeneous condition where Y==0, and
// if so, invokes SolveHomogeneousLeastSquares. For better performance when
// the system is known not to be homogeneous, invoke with checkHomogeneous=0.
static int SolveLeastSquares(int numberOfSamples, double **xt, int xOrder,
double **yt, int yOrder, double **mt, int checkHomogeneous=1);
// Description:
// Convert color in RGB format (Red, Green, Blue) to HSV format
// (Hue, Saturation, Value). The input color is not modified.
static void RGBToHSV(float rgb[3], float hsv[3])
{ RGBToHSV(rgb[0], rgb[1], rgb[2], hsv, hsv+1, hsv+2); }
static void RGBToHSV(float r, float g, float b, float *h, float *s, float *v);
static double* RGBToHSV(double rgb[3]);
static double* RGBToHSV(double r, double g, double b);
static void RGBToHSV(double rgb[3], double hsv[3])
{ RGBToHSV(rgb[0], rgb[1], rgb[2], hsv, hsv+1, hsv+2); }
static void RGBToHSV(double r, double g, double b, double *h, double *s, double *v);
// Description:
// Convert color in HSV format (Hue, Saturation, Value) to RGB
// format (Red, Green, Blue). The input color is not modified.
static void HSVToRGB(float hsv[3], float rgb[3])
{ HSVToRGB(hsv[0], hsv[1], hsv[2], rgb, rgb+1, rgb+2); }
static void HSVToRGB(float h, float s, float v, float *r, float *g, float *b);
static double* HSVToRGB(double hsv[3]);
static double* HSVToRGB(double h, double s, double v);
static void HSVToRGB(double hsv[3], double rgb[3])
{ HSVToRGB(hsv[0], hsv[1], hsv[2], rgb, rgb+1, rgb+2); }
static void HSVToRGB(double h, double s, double v, double *r, double *g, double *b);
// Description:
// Convert color from Lab to XYZ system, and vice-versa
static void LabToXYZ(double lab[3], double xyz[3]);
static void XYZToRGB(double xyz[3], double rgb[3]);
// Description:
// Set the bounds to an uninitialized state
static void UninitializeBounds(double bounds[6]){
bounds[0] = 1.0;
bounds[1] = -1.0;
bounds[2] = 1.0;
bounds[3] = -1.0;
bounds[4] = 1.0;
bounds[5] = -1.0;
}
// Description:
// Are the bounds initialized?
static int AreBoundsInitialized(double bounds[6]){
if (bounds[1]-bounds[0]<0.0)
{
return 0;
}
return 1;
}
// Description:
// Clamp some values against a range
// The method without 'clamped_values' will perform in-place clamping.
static void ClampValue(double *value, const double range[2]);
static void ClampValue(double value, const double range[2], double *clamped_value);
static void ClampValues(
double *values, int nb_values, const double range[2]);
static void ClampValues(
const double *values, int nb_values, const double range[2], double *clamped_values);
// Description:
// Return the scalar type that is most likely to have enough precision
// to store a given range of data once it has been scaled and shifted
// (i.e. [range_min * scale + shift, range_max * scale + shift].
// If any one of the parameters is not an integer number (decimal part != 0),
// the search will default to float types only (float or double)
// Return -1 on error or no scalar type found.
static int GetScalarTypeFittingRange(
double range_min, double range_max,
double scale = 1.0, double shift = 0.0);
// Description:
// Get a vtkDataArray's scalar range for a given component.
// If the vtkDataArray's data type is unsigned char (VTK_UNSIGNED_CHAR)
// the range is adjusted to the whole data type range [0, 255.0].
// Same goes for unsigned short (VTK_UNSIGNED_SHORT) but the upper bound
// is also adjusted down to 4095.0 if was between ]255, 4095.0].
// Return 1 on success, 0 otherwise.
static int GetAdjustedScalarRange(
vtkDataArray *array, int comp, double range[2]);
// Description:
// Return true if first 3D extent is within second 3D extent
// Extent is x-min, x-max, y-min, y-max, z-min, z-max
static int ExtentIsWithinOtherExtent(int extent1[6], int extent2[6]);
// Description:
// Return true if first 3D bounds is within the second 3D bounds
// Bounds is x-min, x-max, y-min, y-max, z-min, z-max
// Delta is the error margin along each axis (usually a small number)
static int BoundsIsWithinOtherBounds(double bounds1[6], double bounds2[6], double delta[3]);
// Description:
// Return true if point is within the given 3D bounds
// Bounds is x-min, x-max, y-min, y-max, z-min, z-max
// Delta is the error margin along each axis (usually a small number)
static int PointIsWithinBounds(double point[3], double bounds[6], double delta[3]);
protected:
vtkMath() {};
~vtkMath() {};
static long Seed;
private:
vtkMath(const vtkMath&); // Not implemented.
void operator=(const vtkMath&); // Not implemented.
};
//----------------------------------------------------------------------------
inline int vtkMath::Floor(double x)
{
#if defined i386 || defined _M_IX86
union { int i[2]; double d; } u;
// use 52-bit precision of IEEE double to round (x - 0.25) to
// the nearest multiple of 0.5, according to prevailing rounding
// mode which is IEEE round-to-nearest,even
u.d = (x - 0.25) + 3377699720527872.0; // (2**51)*1.5
// extract mantissa, use shift to divide by 2 and hence get rid
// of the bit that gets messed up because the FPU uses
// round-to-nearest,even mode instead of round-to-nearest,+infinity
return u.i[0] >> 1;
#else
return (int)floor(x);
#endif
}
//----------------------------------------------------------------------------
inline float vtkMath::Normalize(float x[3])
{
float den;
if ( (den = vtkMath::Norm(x)) != 0.0 )
{
for (int i=0; i < 3; i++)
{
x[i] /= den;
}
}
return den;
}
//----------------------------------------------------------------------------
inline double vtkMath::Normalize(double x[3])
{
double den;
if ( (den = vtkMath::Norm(x)) != 0.0 )
{
for (int i=0; i < 3; i++)
{
x[i] /= den;
}
}
return den;
}
//----------------------------------------------------------------------------
inline float vtkMath::Normalize2D(float x[3])
{
float den;
if ( (den = vtkMath::Norm2D(x)) != 0.0 )
{
for (int i=0; i < 2; i++)
{
x[i] /= den;
}
}
return den;
}
//----------------------------------------------------------------------------
inline double vtkMath::Normalize2D(double x[3])
{
double den;
if ( (den = vtkMath::Norm2D(x)) != 0.0 )
{
for (int i=0; i < 2; i++)
{
x[i] /= den;
}
}
return den;
}
//----------------------------------------------------------------------------
inline float vtkMath::Determinant3x3(const float c1[3],
const float c2[3],
const float c3[3])
{
return c1[0]*c2[1]*c3[2] + c2[0]*c3[1]*c1[2] + c3[0]*c1[1]*c2[2] -
c1[0]*c3[1]*c2[2] - c2[0]*c1[1]*c3[2] - c3[0]*c2[1]*c1[2];
}
//----------------------------------------------------------------------------
inline double vtkMath::Determinant3x3(const double c1[3],
const double c2[3],
const double c3[3])
{
return c1[0]*c2[1]*c3[2] + c2[0]*c3[1]*c1[2] + c3[0]*c1[1]*c2[2] -
c1[0]*c3[1]*c2[2] - c2[0]*c1[1]*c3[2] - c3[0]*c2[1]*c1[2];
}
//----------------------------------------------------------------------------
inline double vtkMath::Determinant3x3(double a1, double a2, double a3,
double b1, double b2, double b3,
double c1, double c2, double c3)
{
return ( a1 * vtkMath::Determinant2x2( b2, b3, c2, c3 )
- b1 * vtkMath::Determinant2x2( a2, a3, c2, c3 )
+ c1 * vtkMath::Determinant2x2( a2, a3, b2, b3 ) );
}
//----------------------------------------------------------------------------
inline float vtkMath::Distance2BetweenPoints(const float x[3],
const float y[3])
{
return ((x[0]-y[0])*(x[0]-y[0]) + (x[1]-y[1])*(x[1]-y[1]) +
(x[2]-y[2])*(x[2]-y[2]));
}
//----------------------------------------------------------------------------
inline double vtkMath::Distance2BetweenPoints(const double x[3],
const double y[3])
{
return ((x[0]-y[0])*(x[0]-y[0]) + (x[1]-y[1])*(x[1]-y[1]) +
(x[2]-y[2])*(x[2]-y[2]));
}
//----------------------------------------------------------------------------
inline double vtkMath::Random(double min, double max)
{
return (min + vtkMath::Random()*(max-min));
}
//----------------------------------------------------------------------------
// Cross product of two 3-vectors. Result vector in z[3].
inline void vtkMath::Cross(const float x[3], const float y[3], float z[3])
{
float Zx = x[1]*y[2] - x[2]*y[1];
float Zy = x[2]*y[0] - x[0]*y[2];
float Zz = x[0]*y[1] - x[1]*y[0];
z[0] = Zx; z[1] = Zy; z[2] = Zz;
}
//----------------------------------------------------------------------------
// Cross product of two 3-vectors. Result vector in z[3].
inline void vtkMath::Cross(const double x[3], const double y[3], double z[3])
{
double Zx = x[1]*y[2] - x[2]*y[1];
double Zy = x[2]*y[0] - x[0]*y[2];
double Zz = x[0]*y[1] - x[1]*y[0];
z[0] = Zx; z[1] = Zy; z[2] = Zz;
}
//BTX
//----------------------------------------------------------------------------
template<class T>
inline double vtkDeterminant3x3(T A[3][3])
{
return A[0][0]*A[1][1]*A[2][2] + A[1][0]*A[2][1]*A[0][2] +
A[2][0]*A[0][1]*A[1][2] - A[0][0]*A[2][1]*A[1][2] -
A[1][0]*A[0][1]*A[2][2] - A[2][0]*A[1][1]*A[0][2];
}
//ETX
//----------------------------------------------------------------------------
inline double vtkMath::Determinant3x3(float A[3][3])
{
return vtkDeterminant3x3(A);
}
//----------------------------------------------------------------------------
inline double vtkMath::Determinant3x3(double A[3][3])
{
return vtkDeterminant3x3(A);
}
//----------------------------------------------------------------------------
inline void vtkMath::ClampValue(double *value, const double range[2])
{
if (value && range)
{
if (*value < range[0])
{
*value = range[0];
}
else if (*value > range[1])
{
*value = range[1];
}
}
}
//----------------------------------------------------------------------------
inline void vtkMath::ClampValue(
double value, const double range[2], double *clamped_value)
{
if (range && clamped_value)
{
if (value < range[0])
{
*clamped_value = range[0];
}
else if (value > range[1])
{
*clamped_value = range[1];
}
else
{
*clamped_value = value;
}
}
}
#endif
|