File: vtkGeometricErrorMetric.h

package info (click to toggle)
vtk 5.0.4-1.1
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 51,084 kB
  • ctags: 70,426
  • sloc: cpp: 524,166; ansic: 220,276; tcl: 43,377; python: 14,037; perl: 3,102; java: 1,436; yacc: 1,033; sh: 339; lex: 248; makefile: 197; asm: 154
file content (129 lines) | stat: -rw-r--r-- 5,261 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    $RCSfile: vtkGeometricErrorMetric.h,v $

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
// .NAME vtkGeometricErrorMetric - Objects that compute
// geometry-based error during cell tessellation.
//
// .SECTION Description
// It is a concrete error metric, based on a geometric criterium:
// the variation of the edge from a straight line.
//
// .SECTION See Also
// vtkGenericCellTessellator vtkGenericSubdivisionErrorMetric

#ifndef __vtkGeometricErrorMetric_h
#define __vtkGeometricErrorMetric_h

#include "vtkGenericSubdivisionErrorMetric.h"

class vtkGenericDataSet;

class VTK_FILTERING_EXPORT vtkGeometricErrorMetric : public vtkGenericSubdivisionErrorMetric
{
public:
  // Description:
  // Construct the error metric with a default squared absolute geometric
  // accuracy equal to 1.
  static vtkGeometricErrorMetric *New();
  
  // Description:
  // Standard VTK type and error macros.
  vtkTypeRevisionMacro(vtkGeometricErrorMetric,vtkGenericSubdivisionErrorMetric);
  void PrintSelf(ostream& os, vtkIndent indent);
  
  // Description:
  // Return the squared absolute geometric accuracy. See
  // SetAbsoluteGeometricTolerance() for details.
  // \post positive_result: result>0
  vtkGetMacro(AbsoluteGeometricTolerance, double);
  
  // Description:
  // Set the geometric accuracy with a squared absolute value.
  // This is the geometric object-based accuracy.
  // Subdivision will be required if the square distance between the real
  // point and the straight line passing through the vertices of the edge is
  // greater than `value'. For instance 0.01 will give better result than 0.1.
  // \pre positive_value: value>0
  void SetAbsoluteGeometricTolerance(double value);
  
  // Description:
  // Set the geometric accuracy with a value relative to the length of the
  // bounding box of the dataset. Internally compute the absolute tolerance.
  // For instance 0.01 will give better result than 0.1.
  // \pre valid_range_value: value>0 && value<1
  // \pre ds_exists: ds!=0
  void SetRelativeGeometricTolerance(double value,
                                     vtkGenericDataSet *ds);
  
  // Description:
  // Does the edge need to be subdivided according to the distance between
  // the line passing through its endpoints and the mid point?
  // The edge is defined by its `leftPoint' and its `rightPoint'.
  // `leftPoint', `midPoint' and `rightPoint' have to be initialized before
  // calling RequiresEdgeSubdivision().
  // Their format is global coordinates, parametric coordinates and
  // point centered attributes: xyx rst abc de...
  // `alpha' is the normalized abscissa of the midpoint along the edge.
  // (close to 0 means close to the left point, close to 1 means close to the
  // right point)
  // \pre leftPoint_exists: leftPoint!=0
  // \pre midPoint_exists: midPoint!=0
  // \pre rightPoint_exists: rightPoint!=0
  // \pre clamped_alpha: alpha>0 && alpha<1
  // \pre valid_size: sizeof(leftPoint)=sizeof(midPoint)=sizeof(rightPoint)
  //          =GetAttributeCollection()->GetNumberOfPointCenteredComponents()+6
  int RequiresEdgeSubdivision(double *leftPoint, double *midPoint, double *rightPoint,
                              double alpha);

  // Description:
  // Return the error at the mid-point. It will return an error relative to
  // the bounding box size if GetRelative() is true, a square absolute error
  // otherwise.
  // See RequiresEdgeSubdivision() for a description of the arguments.
  // \pre leftPoint_exists: leftPoint!=0
  // \pre midPoint_exists: midPoint!=0
  // \pre rightPoint_exists: rightPoint!=0
  // \pre clamped_alpha: alpha>0 && alpha<1
  // \pre valid_size: sizeof(leftPoint)=sizeof(midPoint)=sizeof(rightPoint)
  //          =GetAttributeCollection()->GetNumberOfPointCenteredComponents()+6
  // \post positive_result: result>=0
  double GetError(double *leftPoint, double *midPoint,
                  double *rightPoint, double alpha);
  
  // Description:
  // Return the type of output of GetError()
  int GetRelative();
  
protected:
  vtkGeometricErrorMetric();
  virtual ~vtkGeometricErrorMetric();
  
  // Description:
  // Square distance between a straight line (defined by points x and y)
  // and a point z. Property: if x and y are equal, the line is a point and
  // the result is the square distance between points x and z.
  double Distance2LinePoint(double x[3],
                            double y[3],
                            double z[3]);
  
  double AbsoluteGeometricTolerance;
  double SmallestSize;
  int Relative; // Control the type of output of GetError()
  
private:
  vtkGeometricErrorMetric(const vtkGeometricErrorMetric&);  // Not implemented.
  void operator=(const vtkGeometricErrorMetric&);  // Not implemented.
};

#endif