File: vtkQuadraticWedge.h

package info (click to toggle)
vtk 5.0.4-1.1
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 51,084 kB
  • ctags: 70,426
  • sloc: cpp: 524,166; ansic: 220,276; tcl: 43,377; python: 14,037; perl: 3,102; java: 1,436; yacc: 1,033; sh: 339; lex: 248; makefile: 197; asm: 154
file content (138 lines) | stat: -rw-r--r-- 5,353 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    $RCSfile: vtkQuadraticWedge.h,v $

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
// .NAME vtkQuadraticWedge - cell represents a parabolic, 15-node isoparametric wedge
// .SECTION Description
// vtkQuadraticWedge is a concrete implementation of vtkNonLinearCell to
// represent a three-dimensional, 15-node isoparametric parabolic
// wedge. The interpolation is the standard finite element, quadratic
// isoparametric shape function. The cell includes a mid-edge node. The
// ordering of the fifteen points defining the cell is point ids (0-5,6-15)
// where point ids 0-5 are the six corner vertices of the wedge; followed by
// nine midedge nodes (6-15). Note that these midedge nodes correspond lie
// on the edges defined by (0,1), (1,2), (2,0), (3,4), (4,5), (5,3), (0,3),
// (1,4), (2,5).

// .SECTION See Also
// vtkQuadraticEdge vtkQuadraticTriangle vtkQuadraticTetra
// vtkQuadraticHexahedron vtkQuadraticQuad vtkQuadraticPyramid

#ifndef __vtkQuadraticWedge_h
#define __vtkQuadraticWedge_h

#include "vtkNonLinearCell.h"

class vtkQuadraticEdge;
class vtkQuadraticQuad;
class vtkQuadraticTriangle;
class vtkWedge;
class vtkDoubleArray;

class VTK_FILTERING_EXPORT vtkQuadraticWedge : public vtkNonLinearCell
{
public:
  static vtkQuadraticWedge *New();
  vtkTypeRevisionMacro(vtkQuadraticWedge,vtkNonLinearCell);
  void PrintSelf(ostream& os, vtkIndent indent);

  // Description:
  // Implement the vtkCell API. See the vtkCell API for descriptions 
  // of these methods.
  int GetCellType() {return VTK_QUADRATIC_WEDGE;}
  int GetCellDimension() {return 3;}
  int GetNumberOfEdges() {return 9;}
  int GetNumberOfFaces() {return 5;}
  vtkCell *GetEdge(int edgeId);
  vtkCell *GetFace(int faceId);

  int CellBoundary(int subId, double pcoords[3], vtkIdList *pts);
  void Contour(double value, vtkDataArray *cellScalars, 
               vtkPointLocator *locator, vtkCellArray *verts, 
               vtkCellArray *lines, vtkCellArray *polys, 
               vtkPointData *inPd, vtkPointData *outPd,
               vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd);
  int EvaluatePosition(double x[3], double* closestPoint,
                       int& subId, double pcoords[3], 
                       double& dist2, double *weights);
  void EvaluateLocation(int& subId, double pcoords[3], double x[3],
                        double *weights);
  int Triangulate(int index, vtkIdList *ptIds, vtkPoints *pts);
  void Derivatives(int subId, double pcoords[3], double *values, 
                   int dim, double *derivs);
  virtual double *GetParametricCoords();

  // Description:
  // Clip this quadratic hexahedron using scalar value provided. Like 
  // contouring, except that it cuts the hex to produce linear 
  // tetrahedron.
  void Clip(double value, vtkDataArray *cellScalars, 
            vtkPointLocator *locator, vtkCellArray *tetras,
            vtkPointData *inPd, vtkPointData *outPd,
            vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd,
            int insideOut);

  // Description:
  // Line-edge intersection. Intersection has to occur within [0,1] parametric
  // coordinates and with specified tolerance.
  int IntersectWithLine(double p1[3], double p2[3], double tol, double& t,
                        double x[3], double pcoords[3], int& subId);

  
  // Description:
  // Return the center of the quadratic wedge in parametric coordinates.
  int GetParametricCenter(double pcoords[3]);

  // Description:
  // Quadratic hexahedron specific methods. 
  static void InterpolationFunctions(double pcoords[3], double weights[15]);
  static void InterpolationDerivs(double pcoords[3], double derivs[45]);

  // Description:
  // Given parametric coordinates compute inverse Jacobian transformation
  // matrix. Returns 9 elements of 3x3 inverse Jacobian plus interpolation
  // function derivatives.
  void JacobianInverse(double pcoords[3], double **inverse, double derivs[45]);

protected:
  vtkQuadraticWedge();
  ~vtkQuadraticWedge();

  vtkQuadraticEdge *Edge;
  vtkQuadraticTriangle *TriangleFace;
  vtkQuadraticQuad *Face;
  vtkWedge         *Wedge;
  vtkPointData     *PointData;
  vtkCellData      *CellData;
  vtkDoubleArray   *CellScalars;
  vtkDoubleArray   *Scalars; //used to avoid New/Delete in contouring/clipping
  
  void Subdivide(vtkPointData *inPd, vtkCellData *inCd, vtkIdType cellId, vtkDataArray *cellScalars);

private:
  vtkQuadraticWedge(const vtkQuadraticWedge&);  // Not implemented.
  void operator=(const vtkQuadraticWedge&);  // Not implemented.
};
//----------------------------------------------------------------------------
// Return the center of the quadratic wedge in parametric coordinates.
inline int vtkQuadraticWedge::GetParametricCenter(double pcoords[3])
{
  pcoords[0] = pcoords[1] = 1./3;
  pcoords[2] = 0.5;
  return 0;
}


#endif