File: vtkOpenGLImageActor.cxx

package info (click to toggle)
vtk 5.0.4-1.1
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 51,084 kB
  • ctags: 70,426
  • sloc: cpp: 524,166; ansic: 220,276; tcl: 43,377; python: 14,037; perl: 3,102; java: 1,436; yacc: 1,033; sh: 339; lex: 248; makefile: 197; asm: 154
file content (674 lines) | stat: -rw-r--r-- 18,712 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    $RCSfile: vtkOpenGLImageActor.cxx,v $

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
#include "vtkOpenGLImageActor.h"

#include "vtkMapper.h"
#include "vtkObjectFactory.h"
#include "vtkOpenGLRenderer.h"
#include "vtkRenderWindow.h"
#include "vtkImageData.h"
#include "vtkMatrix4x4.h"
#include "vtkOpenGLRenderWindow.h"

#include <math.h>

#include "vtkOpenGL.h"

#ifndef GL_MAX_TEXTURE_SIZE
#define GL_MAX_TEXTURE_SIZE 1024
#endif

#ifndef VTK_IMPLEMENT_MESA_CXX
vtkCxxRevisionMacro(vtkOpenGLImageActor, "$Revision: 1.31.6.1 $");
vtkStandardNewMacro(vtkOpenGLImageActor);
#endif

// Initializes an instance, generates a unique index.
vtkOpenGLImageActor::vtkOpenGLImageActor()
{
  this->Index = 0;
  this->RenderWindow = 0;
  this->TextureSize[0] = 0;
  this->TextureSize[1] = 0;
}

vtkOpenGLImageActor::~vtkOpenGLImageActor()
{
  this->RenderWindow = NULL;
}

// Release the graphics resources used by this texture.  
void vtkOpenGLImageActor::ReleaseGraphicsResources(vtkWindow *renWin)
{
  if (this->Index && renWin)
    {
    ((vtkRenderWindow *) renWin)->MakeCurrent();
#ifdef GL_VERSION_1_1
    // free any textures
    if (glIsTexture(this->Index))
      {
      GLuint tempIndex;
      tempIndex = this->Index;
      // NOTE: Sun's OpenGL seems to require disabling of texture before delete
      glDisable(GL_TEXTURE_2D);
      glDeleteTextures(1, &tempIndex);
      }
#else
    if (glIsList(this->Index))
      {
      glDeleteLists(this->Index,1);
      }
#endif
    this->TextureSize[0] = 0;
    this->TextureSize[1] = 0;
    }
  this->Index = 0;
  this->RenderWindow = NULL;
  this->Modified();
}

unsigned char *vtkOpenGLImageActor::MakeDataSuitable(int &xsize, int &ysize,
                                                     int &release,
                                                     int &reuseTexture)
{
  int contiguous = 0;
  unsigned short xs,ys;
  int powOfTwo = 0;
  int numComp = this->Input->GetNumberOfScalarComponents();
  int xdim, ydim;

  reuseTexture = 0;
  
  // it must be a power of two and contiguous
  // find the two used dimensions
  // this assumes a 2D image, no lines here folk
  if (this->DisplayExtent[0] != this->DisplayExtent[1])
    {
    xdim = 0;
    if (this->DisplayExtent[2] != this->DisplayExtent[3])
      {
      ydim = 1;
      }
    else
      {
      ydim = 2;
      }
    }
  else
    {
    xdim = 1;
    ydim = 2;
    }
  
  double *spacing = this->Input->GetSpacing();
  double *origin = this->Input->GetOrigin();
  
  // compute the world coordinates
  this->Coords[0] = this->DisplayExtent[0]*spacing[0] + origin[0];
  this->Coords[1] = this->DisplayExtent[2]*spacing[1] + origin[1];
  this->Coords[2] = this->DisplayExtent[4]*spacing[2] + origin[2];
  this->Coords[3] = this->DisplayExtent[1]*spacing[0] + origin[0];
  this->Coords[4] = 
    this->DisplayExtent[2 + (xdim == 1)]*spacing[1] + origin[1];
  this->Coords[5] = this->DisplayExtent[4]*spacing[2] + origin[2];
  this->Coords[6] = this->DisplayExtent[1]*spacing[0] + origin[0];
  this->Coords[7] = this->DisplayExtent[3]*spacing[1] + origin[1];
  this->Coords[8] = this->DisplayExtent[5]*spacing[2] + origin[2];
  this->Coords[9] = this->DisplayExtent[0]*spacing[0] + origin[0];
  this->Coords[10] = 
    this->DisplayExtent[2 + (ydim == 1)]*spacing[1] + origin[1];
  this->Coords[11] = this->DisplayExtent[5]*spacing[2] + origin[2];
  
  // now contiguous would require that xdim = 0 and ydim = 1
  // OR xextent = 1 pixel and xdim = 1 and ydim = 2 
  // OR xdim = 0 and ydim = 2 and yextent = i pixel. In addition
  // the corresponding x display extents must match the 
  // extent of the data
  int *ext = this->Input->GetExtent();
  
  if ( ( xdim == 0 && ydim == 1 && 
         this->DisplayExtent[0] == ext[0] && 
         this->DisplayExtent[1] == ext[1] )||
       ( ext[0] == ext[1] && xdim == 1 && 
         this->DisplayExtent[2] == ext[2] && 
         this->DisplayExtent[3] == ext[3] ) ||
       ( ext[2] == ext[3] && xdim == 0 && ydim == 2 &&
         this->DisplayExtent[0] == ext[0] && 
         this->DisplayExtent[1] == ext[1] ) )
    {
    contiguous = 1;
    }
      
  // if contiguous is it a pow of 2
  if (contiguous)
    {
    xsize = ext[xdim*2+1] - ext[xdim*2] + 1;
    // xsize and ysize must be a power of 2 in OpenGL
    xs = (unsigned short)xsize;
    while (!(xs & 0x01))
      {
      xs = xs >> 1;
      }
    if (xs == 1)
      {
      powOfTwo = 1;
      }
    }
  
  if (contiguous && powOfTwo)
    {
    // can we make y a power of two also ?
    ysize = this->DisplayExtent[ydim*2+1] - this->DisplayExtent[ydim*2] + 1;
    ys = (unsigned short)ysize;
    while (!(ys & 0x01))
      {
      ys = ys >> 1;
      }
    // yes it is a power of two already
    if (ys == 1)
      {
      release = 0;
      this->TCoords[0] = (this->DisplayExtent[xdim*2] - ext[xdim*2] + 0.5)/xsize;
      this->TCoords[1] = 0.5/ysize;  
      this->TCoords[2] = (this->DisplayExtent[xdim*2+1] - ext[xdim*2] + 0.5)/xsize;
      this->TCoords[3] = this->TCoords[1];  
      this->TCoords[4] = this->TCoords[2];
      this->TCoords[5] = 1.0 - 0.5/ysize;  
      this->TCoords[6] = this->TCoords[0];
      this->TCoords[7] = this->TCoords[5];

#ifdef GL_VERSION_1_1
      // if texture size hasn't changed, reuse old texture
      if (xsize == this->TextureSize[0] && ysize == this->TextureSize[1])
        {
        reuseTexture = 1;
        }
#endif
      return (unsigned char *)
        this->Input->GetScalarPointerForExtent(this->DisplayExtent);
      }
    }
  
  // if we made it here then we must copy the data and possibly pad 
  // it as well

  // find the target size
  xsize = 1;
  while (xsize < 
         this->DisplayExtent[xdim*2+1] - this->DisplayExtent[xdim*2] + 1)
    {
    xsize *= 2;
    }
  ysize = 1;
  while (ysize < 
         this->DisplayExtent[ydim*2+1] - this->DisplayExtent[ydim*2] + 1)
    {
    ysize *= 2;
    }
  
  // compute the tcoords
  this->TCoords[0] = 0.5/xsize;
  this->TCoords[1] = 0.5/ysize;  
  this->TCoords[2] = (this->DisplayExtent[xdim*2+1] - this->DisplayExtent[xdim*2] + 0.5)/xsize;
  this->TCoords[3] = this->TCoords[1];  
  this->TCoords[4] = this->TCoords[2];
  this->TCoords[5] = (this->DisplayExtent[ydim*2+1] - this->DisplayExtent[ydim*2] + 0.5)/ysize;  
  this->TCoords[6] = this->TCoords[0];
  this->TCoords[7] = this->TCoords[5];  

#ifdef GL_VERSION_1_1
  // reuse texture if texture size has not changed
  if (xsize == this->TextureSize[0] && ysize == this->TextureSize[1])
    {
    reuseTexture = 1;
    xsize = this->DisplayExtent[xdim*2+1] - this->DisplayExtent[xdim*2] + 1;
    ysize = this->DisplayExtent[ydim*2+1] - this->DisplayExtent[ydim*2] + 1;
    }
#endif

  // if contiguous and texture size hasn't changed, don't copy or pad
  if (reuseTexture && contiguous)
    {
    release = 0;
    return (unsigned char *)
      this->Input->GetScalarPointerForExtent(this->DisplayExtent);
    }

  // allocate the memory
  unsigned char *res = new unsigned char [ysize*xsize*numComp];
  release = 1;
  
  // copy the input data to the memory
  vtkIdType inIncX, inIncY, inIncZ;
  int idxZ, idxY, idxR;
  unsigned char *inPtr = (unsigned char *)
    this->Input->GetScalarPointerForExtent(this->DisplayExtent);
  this->Input->GetContinuousIncrements(this->DisplayExtent, 
                                       inIncX, inIncY, inIncZ);
  int rowLength = numComp*(this->DisplayExtent[1] -this->DisplayExtent[0] +1);
  unsigned char *outPtr = res;
  vtkIdType outIncY, outIncZ;
  if (ydim == 2)
    {
    if (xdim == 0)
      {
      outIncZ = numComp * 
        (xsize - (this->DisplayExtent[1] - this->DisplayExtent[0] + 1));
      }
    else
      {
      outIncZ = numComp * 
        (xsize - (this->DisplayExtent[3] - this->DisplayExtent[2] + 1));
      }
    outIncY = 0;
    }
  else
    {
    outIncY = numComp * 
      (xsize - (this->DisplayExtent[1] - this->DisplayExtent[0] + 1));
    outIncZ = 0;    
    }
  
      
  for (idxZ = this->DisplayExtent[4]; idxZ <= this->DisplayExtent[5]; idxZ++)
    {
    for (idxY = this->DisplayExtent[2]; idxY <= this->DisplayExtent[3]; idxY++)
      {
      for (idxR = 0; idxR < rowLength; idxR++)
        {
        // Pixel operation
        *outPtr = *inPtr;
        outPtr++;
        inPtr++;
        }
      outPtr += outIncY;
      inPtr += inIncY;
      }
    outPtr += outIncZ;
    inPtr += inIncZ;
    }
  
  return res;
}

// Implement base class method.
void vtkOpenGLImageActor::Load(vtkRenderer *ren)
{
  GLenum format = GL_LUMINANCE;

  // need to reload the texture
  if (this->GetMTime() > this->LoadTime.GetMTime() ||
      this->Input->GetMTime() > this->LoadTime.GetMTime() ||
      ren->GetRenderWindow() != this->RenderWindow)
    {
    int xsize, ysize;
    int release, reuseTexture;
    unsigned char *data = this->MakeDataSuitable(xsize,ysize,
                                                 release, reuseTexture);
    int bytesPerPixel = this->Input->GetNumberOfScalarComponents();
    GLuint tempIndex=0;

    if (reuseTexture)
      {
#ifdef GL_VERSION_1_1
      glBindTexture(GL_TEXTURE_2D, this->Index);
#endif
      }
    else
      {
      // free any old display lists
      this->ReleaseGraphicsResources(ren->GetRenderWindow());
      this->RenderWindow = ren->GetRenderWindow();

      // define a display list for this texture
      // get a unique display list id
#ifdef GL_VERSION_1_1
      glGenTextures(1, &tempIndex);
      this->Index = (long) tempIndex;
      glBindTexture(GL_TEXTURE_2D, this->Index);
#else
      this->Index = glGenLists(1);
      glDeleteLists ((GLuint) this->Index, (GLsizei) 0);
      glNewList ((GLuint) this->Index, GL_COMPILE);
#endif

      ((vtkOpenGLRenderWindow *)(ren->GetRenderWindow()))->RegisterTextureResource( this->Index );
      }
    
    if (this->Interpolate)
      {
      glTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
                       GL_LINEAR);
      glTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
                       GL_LINEAR );
      }
    else
      {
      glTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST );
      glTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST );
      }
    glTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_WRAP_S,     GL_CLAMP );
    glTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_WRAP_T,     GL_CLAMP );

    int internalFormat = bytesPerPixel;
    switch (bytesPerPixel)
      {
      case 1: format = GL_LUMINANCE; break;
      case 2: format = GL_LUMINANCE_ALPHA; break;
      case 3: format = GL_RGB; break;
      case 4: format = GL_RGBA; break;
      }
    // if we are using OpenGL 1.1, you can force 32 or16 bit textures
#ifdef GL_VERSION_1_1
    switch (bytesPerPixel)
      {
      case 1: internalFormat = GL_LUMINANCE8; break;
      case 2: internalFormat = GL_LUMINANCE8_ALPHA8; break;
      case 3: internalFormat = GL_RGB8; break;
      case 4: internalFormat = GL_RGBA8; break;
      }
#endif

    if (reuseTexture)
      {
#ifdef GL_VERSION_1_1
      glPixelStorei( GL_UNPACK_ALIGNMENT, 1);
      glPixelStorei( GL_UNPACK_ROW_LENGTH, 0);
      glTexSubImage2D(  GL_TEXTURE_2D, 0,
                        0, 0, xsize, ysize, format, 
                        GL_UNSIGNED_BYTE, (const GLvoid *)data );
#endif
      }
    else
      {
      glTexImage2D( GL_TEXTURE_2D, 0, internalFormat,
                    xsize, ysize, 0, format, 
                    GL_UNSIGNED_BYTE, (const GLvoid *)data );
      this->TextureSize[0] = xsize;
      this->TextureSize[1] = ysize;
      }

#ifndef GL_VERSION_1_1
    glEndList ();
#endif
    // modify the load time to the current time
    this->LoadTime.Modified();
    if (release)
      {
      delete [] data;
      }
    }
  
  // execute the display list that uses creates the texture
#ifdef GL_VERSION_1_1
  glBindTexture(GL_TEXTURE_2D, this->Index);
#else
  glCallList ((GLuint) this->Index);
#endif
  
  // don't accept fragments if they have zero opacity. this will stop the
  // zbuffer from be blocked by totally transparent texture fragments.
  glAlphaFunc (GL_GREATER, (GLclampf) 0);
  glEnable (GL_ALPHA_TEST);

  // now bind it 
  glEnable(GL_TEXTURE_2D);

  // draw the quad
  if ( vtkMapper::GetResolveCoincidentTopology() )
    {
    if ( vtkMapper::GetResolveCoincidentTopology() == 
         VTK_RESOLVE_SHIFT_ZBUFFER )
      {
      }
    else
      {
#ifdef GL_VERSION_1_1
      double f, u;
      glEnable(GL_POLYGON_OFFSET_FILL);
      vtkMapper::GetResolveCoincidentTopologyPolygonOffsetParameters(f,u);
      glPolygonOffset(f,u);
#endif      
      }
    }
  glDisable(GL_COLOR_MATERIAL);
  glDisable (GL_CULL_FACE);
  glDisable( GL_LIGHTING );
  glColor4f( 1.0, 1.0, 1.0, this->Opacity );
  glBegin( GL_QUADS );
  for (int i = 0; i < 4; i++ )
    {
    glTexCoord2dv( this->TCoords + i*2 );
    glVertex3dv(this->Coords + i*3);
    }  
  glEnd();
  // Turn lighting back on
  glEnable( GL_LIGHTING );
}

// Determine if a given texture size is supported by the
// video card
int vtkOpenGLImageActor::TextureSizeOK( int size[2] )
{
  // In version 1.1 or later, use proxy texture to figure out if
  // the texture is too big
#ifdef GL_VERSION_1_1
  
  // Do a quick test to see if we are too large
  if ( size[0] > GL_MAX_TEXTURE_SIZE ||
       size[1] > GL_MAX_TEXTURE_SIZE )
    {
    return 0;
    }
  
  // Test the texture to see if it fits in memory
  glTexImage2D( GL_PROXY_TEXTURE_2D, 0, GL_RGBA8, 
                size[0], size[1],
                0, GL_RGBA, GL_UNSIGNED_BYTE, (unsigned char *)NULL );
  
  GLint params = 0;
  glGetTexLevelParameteriv ( GL_PROXY_TEXTURE_2D, 0, GL_TEXTURE_WIDTH, 
    &params ); 

  // if it does, we will render it later. define the texture here
  if ( params == 0 )
    {
    // Can't use that texture
    return 0;
    }
  else
    {
    return 1;
    }
#else
  
  // Otherwise we are version 1.0 and we'll just assume the card can do 1024x1024
  if ( size[0] > 1024 || size[1] > 1024 ) 
    {
    return 0;
    }
  else
    {
    return 1;
    }
#endif
}


// Actual actor render method.
// Recursive to handle larger textures than can be rendered by
// a given video card. Assumes all video cards can render a texture
// of 256x256 so will fail if card reports that it cannot render
// a texture of this size rather than recursing further
void vtkOpenGLImageActor::Render(vtkRenderer *ren)
{
  // Save the current display extent since we might change it
  int savedDisplayExtent[6];
  this->GetDisplayExtent( savedDisplayExtent );
 
  // What is the power of two texture big enough to fit the display extent?
  // This should be 1 in some direction.
  int i;
  int pow2[3] = {1,1,1};
  int baseSize[3];
  for ( i = 0; i < 3; i++ )
    {
    baseSize[i] = this->DisplayExtent[i*2+1] - this->DisplayExtent[i*2] + 1;
    while( pow2[i] < baseSize[i] )
      {
      pow2[i] *= 2;
      }
    }
  
  // Find the 2d texture in the 3d pow2 structure
  int size[2];
  if ( pow2[0] == 1 )
    {
    size[0] = pow2[1];
    size[1] = pow2[2];
    }
  else if ( pow2[1] == 1 )
    {
    size[0] = pow2[0];
    size[1] = pow2[2];
    }
  else
    {
    size[0] = pow2[0];
    size[1] = pow2[1];
    }
  
  // Check if we can fit this texture in memory
  if ( this->TextureSizeOK(size) )
    {
    // We can fit it - render
    this->InternalRender( ren );
    }
  else
    {
    // If we can't handle a 256x256 or smaller texture,
    // just give up and don't render anything. Something
    // must be horribly wrong...
    if ( size[0] <= 256 && size[1] <= 256 )
      {
      return;
      }
    
    // We can't fit it - subdivide
    int newDisplayExtent[6];
    int idx;

    // Find the biggest side
    if ( baseSize[0] >= baseSize[1] && baseSize[0] >= baseSize[2] )
      {
      idx = 0;
      }
    else if ( baseSize[1] >= baseSize[0] && baseSize[1] >= baseSize[2] )
      {
      idx = 1;
      }
    else 
      {
      idx = 2;
      }
    
    // For the other two sides, just copy in the display extent
    for ( i = 0; i < 3; i++ )
      {
      if ( i != idx )
        {
        newDisplayExtent[i*2] = this->DisplayExtent[i*2];
        newDisplayExtent[i*2+1] = this->DisplayExtent[i*2+1];        
        }
      }
    
    // For the biggest side - divide the power of two size in 1/2
    // This is the first half
    newDisplayExtent[idx*2] = savedDisplayExtent[idx*2];
    newDisplayExtent[idx*2+1] = 
      this->DisplayExtent[idx*2] + baseSize[idx]/2 - 1;
    
    
    // Set it as the display extent and render
    this->SetDisplayExtent( newDisplayExtent );
    this->Render(ren);

    // This is the remaining side (since the display extent is not 
    // necessarily a power of 2, this is likely to be less than half
    newDisplayExtent[idx*2] = 
      this->DisplayExtent[idx*2] + baseSize[idx]/2 - 1;
    newDisplayExtent[idx*2+1] = savedDisplayExtent[idx*2+1];
    
    // Set it as the display extent and render
    this->SetDisplayExtent( newDisplayExtent );
    this->Render(ren);
    }
  
  // Restore the old display extent
  this->SetDisplayExtent( savedDisplayExtent ); 
}

// This is the non-recursive render that will not check the
// size of the image (it has already been determined to
// be fine)
void vtkOpenGLImageActor::InternalRender(vtkRenderer *ren)
{

  // for picking
  glDepthMask (GL_TRUE);

  // build transformation 
  if (!this->IsIdentity)
    {
    double *mat = this->GetMatrix()->Element[0];
    double mat2[16];
    mat2[0] = mat[0];
    mat2[1] = mat[4];
    mat2[2] = mat[8];
    mat2[3] = mat[12];
    mat2[4] = mat[1];
    mat2[5] = mat[5];
    mat2[6] = mat[9];
    mat2[7] = mat[13];
    mat2[8] = mat[2];
    mat2[9] = mat[6];
    mat2[10] = mat[10];
    mat2[11] = mat[14];
    mat2[12] = mat[3];
    mat2[13] = mat[7];
    mat2[14] = mat[11];
    mat2[15] = mat[15];
    
    // insert model transformation 
    glMatrixMode(GL_MODELVIEW);
    glPushMatrix();
    glMultMatrixd(mat2);
    }
  
  // Render the texture
  this->Load(ren);

  // pop transformation matrix
  if (!this->IsIdentity)
    {
    glMatrixMode(GL_MODELVIEW);
    glPopMatrix();
    }
}

void vtkOpenGLImageActor::PrintSelf(ostream& os, vtkIndent indent)
{
  this->Superclass::PrintSelf(os,indent);
}