1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
|
/*=========================================================================
Program: Visualization Toolkit
Module: $RCSfile: vtkQuaternionInterpolator.cxx,v $
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "vtkQuaternionInterpolator.h"
#include "vtkObjectFactory.h"
#include "vtkMath.h"
#include <vtkstd/vector>
vtkCxxRevisionMacro(vtkQuaternionInterpolator, "$Revision: 1.5 $");
vtkStandardNewMacro(vtkQuaternionInterpolator);
//----------------------------------------------------------------------------
// PIMPL STL encapsulation for list of quaternions. The list is sorted on
// the spline paramter T (or Time) using a STL list.
// Here we define a quaternion class that includes extra information including
// a unit quaternion representation.
struct vtkQuaternion
{
double Time;
double Q[4]; //VTK's quaternion: unit rotation axis with angles in degrees
double QUnit[4]; //Unit quaternion (i.e., normalized)
vtkQuaternion()
{
this->Time = 0.0;
this->Q[0] = this->Q[1] = this->Q[2] = this->Q[3] = 0.0;
this->QUnit[0] = this->QUnit[1] = this->QUnit[2] = this->QUnit[3] = 0.0;
}
vtkQuaternion(double t, double q[4])
{
this->Time = t;
this->Q[0] = this->QUnit[0] = q[0];
this->Q[1] = this->QUnit[1] = q[1];
this->Q[2] = this->QUnit[2] = q[2];
this->Q[3] = this->QUnit[3] = q[3];
// determine theta, sin(theta), cos(theta) for unit quaternion
this->QUnit[0] *= vtkMath::DegreesToRadians(); //convert to radians
vtkQuaternion::Normalize(this->QUnit);
}
static void Add(double q0[4], double q1[4], double q[4])
{
q[0] = q0[0] + q1[0];
q[1] = q0[1] + q1[1];
q[2] = q0[2] + q1[2];
q[3] = q0[3] + q1[3];
}
static void Product(double q0[4], double q1[4], double q[4])
{
q[0] = q0[0]*q1[0] - q0[1]*q1[1] - q0[2]*q1[2] - q0[3]*q1[3];
q[1] = q0[0]*q1[1] + q0[1]*q1[0] + q0[2]*q1[3] - q0[3]*q1[2];
q[2] = q0[0]*q1[2] - q0[1]*q1[3] + q0[2]*q1[0] + q0[3]*q1[1];
q[3] = q0[0]*q1[3] + q0[1]*q1[2] - q0[2]*q1[1] + q0[3]*q1[0];
}
static void Conjugate(double q[4], double qConj[4])
{
qConj[0] = q[0];
qConj[1] = -q[1];
qConj[2] = -q[2];
qConj[3] = -q[3];
}
static void Inverse(double q[4], double qInv[4])
{
vtkQuaternion::Conjugate(q,qInv);
double norm2 = vtkQuaternion::Norm2(q);
if ( norm2 != 0.0 )
{
qInv[0] /= norm2;
qInv[1] /= norm2;
qInv[2] /= norm2;
qInv[3] /= norm2;
}
}
static double Norm2(double q[4])
{
return (q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3]);
}
static double Normalize(double q[4])
{
double norm = sqrt(q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3]);
if ( norm != 0.0 )
{
q[0] /= norm;
q[1] /= norm;
q[2] /= norm;
q[3] /= norm;
}
return norm;
}
// convert a unit quaternion to a VTK quaternion (angle in degrees;unit axis)
static void UnitToVTK(double q[4])
{
double vNorm = sqrt(q[1]*q[1] + q[2]*q[2] + q[3]*q[3]);
if ( vNorm != 0.0 )
{
q[0] /= vNorm;
q[1] /= vNorm;
q[2] /= vNorm;
q[3] /= vNorm;
}
q[0] *= vtkMath::RadiansToDegrees();
}
// compute unit vector where q is a unit quaternion
static void UnitVector(double q[4], double &theta, double &sinTheta,
double &cosTheta, double v[3])
{
double norm = sqrt(q[1]*q[1] + q[2]*q[2] + q[3]*q[3]);
v[0] = q[1]/norm;
v[1] = q[2]/norm;
v[2] = q[3]/norm;
int maxI = (q[1] > q[2] ? (q[1] > q[3] ? 1 : 3) : (q[2] > q[3] ? 2 : 3));
if (q[maxI] != 0.0 )
{
sinTheta = q[maxI] / v[maxI-1];
theta = asin(sinTheta);
cosTheta = cos(theta);
}
}
// log(q) where q is a unit (normalized) quaternion
static void UnitLog(double q[4], double qLog[4])
{
double theta, sinTheta, cosTheta, v[3];
vtkQuaternion::UnitVector(q,theta,sinTheta,cosTheta,v);
qLog[0] = 0.0;
qLog[1] = theta * v[0];
qLog[2] = theta * v[1];
qLog[3] = theta * v[2];
}
// exp(q) where q is a unit quaternion
static void UnitExp(double q[4], double qExp[4])
{
double theta, sinTheta, cosTheta, v[3];
vtkQuaternion::UnitVector(q,theta,sinTheta,cosTheta,v);
qExp[0] = cosTheta;
qExp[1] = sinTheta * v[0];
qExp[2] = sinTheta * v[1];
qExp[3] = sinTheta * v[2];
}
};
// The list is arranged in increasing order in T
class vtkQuaternionList : public vtkstd::vector<vtkQuaternion> {};
typedef vtkQuaternionList::iterator QuaternionListIterator;
//----------------------------------------------------------------------------
vtkQuaternionInterpolator::vtkQuaternionInterpolator()
{
// Set up the interpolation
this->QuaternionList = new vtkQuaternionList;
this->InterpolationType = INTERPOLATION_TYPE_SPLINE;
}
//----------------------------------------------------------------------------
vtkQuaternionInterpolator::~vtkQuaternionInterpolator()
{
this->Initialize();
delete this->QuaternionList;
}
//----------------------------------------------------------------------------
int vtkQuaternionInterpolator::GetNumberOfQuaternions()
{
return this->QuaternionList->size();
}
//----------------------------------------------------------------------------
double vtkQuaternionInterpolator::GetMinimumT()
{
if (this->QuaternionList->size() > 0)
{
return this->QuaternionList->front().Time;
}
else
{
return 0.0;
}
}
//----------------------------------------------------------------------------
double vtkQuaternionInterpolator::GetMaximumT()
{
if (this->QuaternionList->size() > 0)
{
return this->QuaternionList->back().Time;
}
else
{
return 0.0;
}
}
//----------------------------------------------------------------------------
void vtkQuaternionInterpolator::Initialize()
{
// Wipe out old data
this->QuaternionList->clear();
}
//----------------------------------------------------------------------------
void vtkQuaternionInterpolator::AddQuaternion(double t, double q[4])
{
int size = this->QuaternionList->size();
// Check special cases: t at beginning or end of list
if ( size <= 0 || t < this->QuaternionList->front().Time )
{
this->QuaternionList->insert(this->QuaternionList->begin(),vtkQuaternion(t,q));
return;
}
else if ( t > this->QuaternionList->back().Time )
{
this->QuaternionList->push_back(vtkQuaternion(t,q));
return;
}
else if ( size == 1 && t == this->QuaternionList->front().Time )
{
this->QuaternionList->front() = vtkQuaternion(t,q);
return;
}
// Okay, insert in sorted order
QuaternionListIterator iter = this->QuaternionList->begin();
QuaternionListIterator nextIter = iter + 1;
for (int i=0; i < (size-1); i++, ++iter, ++nextIter)
{
if ( t == iter->Time )
{
(*iter) = vtkQuaternion(t,q); //overwrite
break;
}
else if ( t > iter->Time && t < nextIter->Time )
{
this->QuaternionList->insert(nextIter, vtkQuaternion(t,q));
break;
}
}//for not in the right spot
this->Modified();
}
//----------------------------------------------------------------------------
void vtkQuaternionInterpolator::RemoveQuaternion(double t)
{
if ( t < this->QuaternionList->front().Time ||
t > this->QuaternionList->back().Time )
{
return;
}
QuaternionListIterator iter = this->QuaternionList->begin();
for ( ; iter->Time != t && iter != this->QuaternionList->end(); ++iter )
{
}
if ( iter != this->QuaternionList->end() )
{
this->QuaternionList->erase(iter);
}
this->Modified();
}
//----------------------------------------------------------------------------
//Interpolate using spherical linear interpolation between the quaternions q0
//and q1 to produce the output q. The parametric coordinate t is [0,1] and
//lies between (q0,q1).
void vtkQuaternionInterpolator::Slerp(double t, double q0[4], double q1[4],
double q[4])
{
double theta = acos( vtkMath::Dot(q0+1,q1+1) );
double t1 = sin((1.0-t)*theta)/sin(theta);
double t2 = sin(t*theta)/sin(theta);
q[0] = q0[0]*t1 + q1[0]*t2;
q[1] = q0[1]*t1 + q1[1]*t2;
q[2] = q0[2]*t1 + q1[2]*t2;
q[3] = q0[3]*t1 + q1[3]*t2;
}
//----------------------------------------------------------------------------
void vtkQuaternionInterpolator::InnerPoint(double q0[4], double q1[4],
double q2[4], double q[4])
{
double qInv[4], qL[4], qR[4];
vtkQuaternion::Inverse(q1,qInv);
vtkQuaternion::Product(qInv,q2,qL);
vtkQuaternion::Product(qInv,q0,qR);
double qLLog[4], qRLog[4], qSum[4], qExp[4];
vtkQuaternion::UnitLog(qL, qLLog);
vtkQuaternion::UnitLog(qR, qRLog);
vtkQuaternion::Add(qLLog,qRLog,qSum);
qSum[1] /= -4.0;
qSum[2] /= -4.0;
qSum[3] /= -4.0;
vtkQuaternion::UnitExp(qSum,qExp);
vtkQuaternion::Product(q1,qExp,q);
}
//----------------------------------------------------------------------------
void vtkQuaternionInterpolator::InterpolateQuaternion(double t, double q[4])
{
// The quaternion may be clamped if it is outside the range specified
if ( t <= this->QuaternionList->front().Time )
{
vtkQuaternion &Q = this->QuaternionList->front();
q[0] = Q.Q[0]; q[1] = Q.Q[1]; q[2] = Q.Q[2]; q[3] = Q.Q[3];
return;
}
else if ( t >= this->QuaternionList->back().Time )
{
vtkQuaternion &Q = this->QuaternionList->back();
q[0] = Q.Q[0]; q[1] = Q.Q[1]; q[2] = Q.Q[2]; q[3] = Q.Q[3];
return;
}
// Depending on the interpolation type we do the right thing.
// The code above guarantees that there are at least two quaternions defined.
int numQuats = this->GetNumberOfQuaternions();
if ( this->InterpolationType == INTERPOLATION_TYPE_LINEAR || numQuats < 3 )
{
QuaternionListIterator iter = this->QuaternionList->begin();
QuaternionListIterator nextIter = iter + 1;
for ( ; nextIter != this->QuaternionList->end(); ++iter, ++nextIter)
{
if ( iter->Time <= t && t <= nextIter->Time )
{
double T = (t - iter->Time) / (nextIter->Time - iter->Time);
this->Slerp(T,iter->Q,nextIter->Q,q);
break;
}
}
}//if linear quaternion interpolation
else // this->InterpolationType == INTERPOLATION_TYPE_SPLINE
{
QuaternionListIterator iter = this->QuaternionList->begin();
QuaternionListIterator nextIter = iter + 1;
QuaternionListIterator iter0, iter1, iter2, iter3;
//find the interval
double T=0.0;
int i;
for (i=0; nextIter != this->QuaternionList->end(); ++iter, ++nextIter, ++i)
{
if ( iter->Time <= t && t <= nextIter->Time )
{
T = (t - iter->Time) / (nextIter->Time - iter->Time);
break;
}
}
double ai[4], bi[4], qc[4], qd[4];
if ( i == 0 ) //initial interval
{
iter1 = iter;
iter2 = nextIter;
iter3 = nextIter + 1;
ai[0] = iter1->QUnit[0]; //just duplicate first quaternion
ai[1] = iter1->QUnit[1];
ai[2] = iter1->QUnit[2];
ai[3] = iter1->QUnit[3];
this->InnerPoint(iter1->QUnit, iter2->QUnit, iter3->QUnit, bi);
}
else if ( i == (numQuats-2) ) //final interval
{
iter0 = iter - 1;
iter1 = iter;
iter2 = nextIter;
this->InnerPoint(iter0->QUnit, iter1->QUnit, iter2->QUnit, ai);
bi[0] = iter2->QUnit[0]; //just duplicate last quaternion
bi[1] = iter2->QUnit[1];
bi[2] = iter2->QUnit[2];
bi[3] = iter2->QUnit[3];
}
else //in a middle interval somewhere
{
iter0 = iter - 1;
iter1 = iter;
iter2 = nextIter;
iter3 = nextIter + 1;
this->InnerPoint(iter0->QUnit, iter1->QUnit, iter2->QUnit, ai);
this->InnerPoint(iter1->QUnit, iter2->QUnit, iter3->QUnit, bi);
}
// These three Slerp operations implement a Squad interpolation
this->Slerp(T,iter1->QUnit,iter2->QUnit,qc);
this->Slerp(T,ai,bi,qd);
this->Slerp(2.0*T*(1.0-T),qc,qd,q);
vtkQuaternion::UnitToVTK(q);
}
return;
}
//----------------------------------------------------------------------------
void vtkQuaternionInterpolator::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os, indent);
os << indent << "There are " << this->GetNumberOfQuaternions()
<< " quaternions to be interpolated\n";
os << indent << "Interpolation Type: "
<< (this->InterpolationType == INTERPOLATION_TYPE_LINEAR ?
"Linear\n" : "Spline\n");
}
|