1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
|
#include "vtkConditionVariable.h"
#include "vtkMultiThreader.h"
#include <stdlib.h>
// For vtkSleep
#include "vtkWindows.h"
#include <ctype.h>
#include <time.h>
// Cross platform sleep
inline void vtkSleep( double duration )
{
// sleep according to OS
#ifdef _WIN32
Sleep( (int)( 1000 * duration ) );
#elif defined(__FreeBSD__) || defined(__linux__) || defined(sgi) || defined(__APPLE__)
struct timespec sleep_time, dummy;
sleep_time.tv_sec = static_cast<int>( duration );
sleep_time.tv_nsec = static_cast<int>( 1000000000 * ( duration - sleep_time.tv_sec ) );
nanosleep( &sleep_time, &dummy );
#else
(void)duration;
#warning Missing sleep implementation
#endif
}
typedef struct {
vtkMutexLock* Lock;
vtkConditionVariable* Condition;
int Done;
int NumberOfWorkers;
} vtkThreadUserData;
VTK_THREAD_RETURN_TYPE vtkTestCondVarThread( void* arg )
{
int threadId = static_cast<vtkMultiThreader::ThreadInfo*>(arg)->ThreadID;
int threadCount = static_cast<vtkMultiThreader::ThreadInfo*>(arg)->NumberOfThreads;
vtkThreadUserData* td = static_cast<vtkThreadUserData*>(
static_cast<vtkMultiThreader::ThreadInfo*>(arg)->UserData );
if ( td )
{
if ( threadId == 0 )
{
td->Done = 0;
td->Lock->Lock();
cout << "Thread " << ( threadId + 1 ) << " of " << threadCount << " initializing.\n";
cout.flush();
td->Lock->Unlock();
int i;
for ( i = 0; i < 2 * threadCount; ++ i )
{
td->Lock->Lock();
cout << "Signaling (count " << i << ")...\n";
cout.flush();
td->Lock->Unlock();
td->Condition->Signal();
//sleep( 1 );
}
i = 0;
do
{
td->Lock->Lock();
td->Done = 1;
cout << "Broadcasting...\n";
cout.flush();
td->Lock->Unlock();
td->Condition->Broadcast();
vtkSleep( 0.2 ); // 0.2 s between broadcasts
}
while ( td->NumberOfWorkers > 0 && ( i ++ < 1000 ) );
if ( i >= 1000 )
{
exit( 2 );
}
}
else
{
// Wait for thread 0 to initialize... Ugly but effective
while ( td->Done < 0 )
{
vtkSleep( 0.2 ); // 0.2 s between checking
}
// Wait for the condition and then note we were signaled.
// This part looks like a Hansen Monitor:
// ref: http://www.cs.utexas.edu/users/lorenzo/corsi/cs372h/07S/notes/Lecture12.pdf (page 2/5), code on Tradeoff slide.
td->Lock->Lock();
while ( td->Done <= 0 )
{
cout << " Thread " << ( threadId + 1 ) << " waiting.\n";
cout.flush();
// Wait() performs an Unlock internally.
td->Condition->Wait( td->Lock );
// Once Wait() returns, the lock is locked again.
cout << " Thread " << ( threadId + 1 ) << " responded.\n";
cout.flush();
}
-- td->NumberOfWorkers;
td->Lock->Unlock();
}
td->Lock->Lock();
cout << " Thread " << ( threadId + 1 ) << " of " << threadCount << " exiting.\n";
cout.flush();
td->Lock->Unlock();
}
else
{
cout << "No thread data!\n";
cout << " Thread " << ( threadId + 1 ) << " of " << threadCount << " exiting.\n";
-- td->NumberOfWorkers;
cout.flush();
}
return VTK_THREAD_RETURN_VALUE;
}
int TestConditionVariable( int, char*[] )
{
vtkMultiThreader* threader = vtkMultiThreader::New();
int numThreads = threader->GetNumberOfThreads();
vtkThreadUserData data;
data.Lock = vtkMutexLock::New();
data.Condition = vtkConditionVariable::New();
data.Done = -1;
data.NumberOfWorkers = numThreads - 1;
threader->SetNumberOfThreads( numThreads );
threader->SetSingleMethod( vtkTestCondVarThread, &data );
threader->SingleMethodExecute();
cout << "Done with threader.\n";
cout.flush();
vtkIndent indent;
indent = indent.GetNextIndent();
data.Condition->PrintSelf( cout, indent );
data.Lock->Delete();
data.Condition->Delete();
threader->Delete();
return 0;
}
|