File: TestPolynomialSolversUnivariate.cxx

package info (click to toggle)
vtk 5.8.0-13
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 130,524 kB
  • sloc: cpp: 1,129,256; ansic: 708,203; tcl: 48,526; python: 20,875; xml: 6,779; yacc: 4,208; perl: 3,121; java: 2,788; lex: 931; sh: 660; asm: 471; makefile: 299
file content (848 lines) | stat: -rw-r--r-- 30,157 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
/*
 * Copyright 2007 Sandia Corporation.
 * Under the terms of Contract DE-AC04-94AL85000, there is a non-exclusive
 * license for use of this work by or on behalf of the
 * U.S. Government. Redistribution and use in source and binary forms, with
 * or without modification, are permitted provided that this Notice and any
 * statement of authorship are reproduced on all copies.
 */
#include "vtkPolynomialSolversUnivariate.h"
#include "vtkTimerLog.h"

static int vtkRunPolynomial(
  double* poly, int degree, double* rootInt, double* upperBnds, 
  double tolSturm, double divtol, double* expected, int expectedLength, 
  double expectedTol, const char* name, bool divideGCD, bool useHabichtSolver, int intType)
{
  int rootcount;
  const char* sname = useHabichtSolver ? "Habicht" : "Sturm";
  vtkTimerLog* timer = vtkTimerLog::New();

  vtkPolynomialSolversUnivariate::SetDivisionTolerance( divtol );
  if ( useHabichtSolver )
    {
    timer->StartTimer();
    rootcount = vtkPolynomialSolversUnivariate::HabichtBisectionSolve( 
      poly, degree, rootInt, upperBnds, tolSturm, intType, divideGCD );
    timer->StopTimer();
    }
  else
    {
    timer->StartTimer();
    rootcount = vtkPolynomialSolversUnivariate::SturmBisectionSolve( 
      poly, degree, rootInt, upperBnds, tolSturm, intType, divideGCD );
    timer->StopTimer();
    }

  int trueexp = expectedLength;
  cout << "divtol is: " << divtol << ", " << timer->GetElapsedTime() << "s" << endl;
  timer->Delete();

  int j = 0;
  for(int i = 0; i < rootcount; i++, j++)
    {
    cout << upperBnds[i] << endl;
    while(j < expectedLength && 
        (
          ( ((intType & 1) == 0) && expected[j] == rootInt[0] ) ||
          ( ((intType & 2) == 0) && expected[j] == rootInt[1] ) ||
          expected[j] < rootInt[0] ||
          expected[j] > rootInt[1]
        ))
      {
      j++;
      trueexp--;
      }
    if ( j >= expectedLength )
      {
      vtkGenericWarningMacro( <<  sname << "BisectionSolve( " << name << ", " << ((intType&1)?"[":"]") << rootInt[0] << ", " << rootInt[1] << " " << ((intType&2)?"]":"[") << " )," 
        << upperBnds[i] << " found but not expected." << "." );
      return 1;
      }
    else if ( fabs( upperBnds[i] - expected[j] ) > expectedTol)
      {
      vtkGenericWarningMacro( << sname << "BisectionSolve( " << name << ", " << ((intType&1)?"[":"]") << rootInt[0] << ", " << rootInt[1] << " " << ((intType&2)?"]":"[") << " ),"
        << " found: "
        << upperBnds[i] << ", expected " << expected[j] << ".");
      return 1;
      }
    }
  while(j < expectedLength)
    {
    if ( expected[j] <= rootInt[0] || expected[j] >= rootInt[1] )
      {
      trueexp--;
      }
    j++;
    }
  if( rootcount != trueexp )
    {
    vtkGenericWarningMacro( << sname << "BisectionSolve( " << name << ", " << ((intType&1)?"[":"]") << rootInt[0] << ", " << rootInt[1] << " " << ((intType&2)?"]":"[") << " ), found: "
      << rootcount << " roots, expected " << trueexp << " roots.");
    return 1;
    }

  return 0;
}

//=============================================================================
static int vtkTestPolynomials(
  double * poly, int degree, double* rootInt, double* upperBnds, 
  double tolSturm, double* divtols, int len, double* expectd, int expectedLength,
  double expectTol, const char* name, bool divideGCD, int methods = 3, int intType = 0 )
{
  int rval = 0;
  if( methods & 1 )
    {
    cout << endl << name << " (Sturm)" << endl;
    for ( int i = 0; i < len; ++ i )
      {
      rval |= vtkRunPolynomial(poly, degree, rootInt, upperBnds, tolSturm, divtols[i], 
        expectd, expectedLength, expectTol, name, divideGCD, false, intType );
      }
    }

  if( methods & 2 )
    {
    cout << endl << name << " (Habicht)" << endl;
    for ( int i = 0; i < len; ++ i )
      {
      rval |= vtkRunPolynomial(poly, degree, rootInt, upperBnds, tolSturm, divtols[i], 
        expectd, expectedLength, expectTol, name, divideGCD, true, intType );
      }
    }
  return rval;
}

//=============================================================================
int TestPolynomialSolversUnivariate( int len, char * c[] )
{
  (void) len;
  (void) c;
  double tolSturm = 1.e-18;
  double tolRoots = 1.e-15;
  double roots[3000];
  double rootInt[] = { -14., 28.1 };
  double divtol[] = { 1e-5,1e-6, 1e-7, 1e-8, 1e-9, 1e-10, 1e-11, 1e-12, 1e-13 };
  int limit = 6;
  int stat = 0;
  vtkTimerLog* timer = vtkTimerLog::New();
  timer->AllocateLog();

  cout << "------Testing set 'Jenkins Traub'------" << endl;
  cout << 13 << " polynomials in the set." << endl;
  // Testing mul(x-i, i=1..19)
  double JT2[] = {
    1.000000000000000e+00, -1.900000000000000e+02, 1.681500000000000e+04, 
    -9.205500000000000e+05, 3.491694600000000e+07, -9.739419000000000e+08, 
    2.069293363000000e+10, -3.422525119000000e+11, 4.465226757381000e+12, 
    -4.628064775191000e+13, 3.819220555021950e+14, -2.503858755467550e+15, 
    1.295363698994390e+16, -5.226090336251272e+16, 1.614297365301190e+17, 
    -3.713847873452280e+17, 6.101160757404918e+17, -6.686097303411533e+17, 
    4.315651468176384e+17, -1.216451004088320e+17
  };
  double JT2RTS[] = {
    1.000000000000000e+00, 2.000000000000000e+00, 3.000000000000000e+00, 
    4.000000000000000e+00, 5.000000000000000e+00, 6.000000000000000e+00, 
    7.000000000000000e+00, 8.000000000000000e+00, 9.000000000000000e+00, 
    1.000000000000000e+01, 1.100000000000000e+01, 1.200000000000000e+01, 
    1.300000000000000e+01, 1.400000000000000e+01, 1.500000000000000e+01, 
    1.600000000000000e+01, 1.700000000000000e+01, 1.800000000000000e+01, 
    1.900000000000000e+01
  };
  stat |= vtkTestPolynomials(JT2, 19, rootInt, roots,
                tolSturm, divtol, limit, 
                JT2RTS, 19, 2.500000e-03, "mul(x-i, i=1..19)", false, 3, 0);

  double JT22[] = {
    1., -171., 13566., -662796., 22323822., -549789282., 10246937272., 
    -147560703732., 1661573386473., -14710753408923., 102417740732658., 
    -557921681547048., 2.35312504054998e+015, -7.55152759206302e+015, 
    1.79507122809215e+016, -3.03212540077194e+016, 3.40122495938227e+016, 
    -2.23769880585216e+016, 6.402373705728e+015
  };
  stat |= vtkTestPolynomials(JT22, 18, rootInt, roots,
                tolSturm, divtol, limit, 
                JT2RTS, 18, 0.500000e-03, "mul(x-i, i=1..19)", false, 3, 0);

  double JT23[] = {
   1., -153., 10812., -468180., 13896582., -299650806., 4853222764., 
   -60202693980., 577924894833., -4308105301929., 24871845297936., 
   -110228466184200., 369012649234384., -909299905844112., 1.58331397572749e+015, 
   -1.82160244462464e+015, 1.2234055905792e+015, -355687428096000. 
  };
  stat |= vtkTestPolynomials(JT23, 17, rootInt, roots,
                tolSturm, divtol, limit, 
                JT2RTS, 17, 1e-4, "mul(x-i, i=1..19)", false, 3, 0);



  // Testing mul(x-10^(-i),i=1..8)
  double JT3[] = {
    1.000000000000000e+00, -1.111111100000000e-01, 1.122334332211000e-03, 
    -1.123456666543211e-06, 1.123557787755321e-10, -1.123456666543211e-15, 
    1.122334332211000e-21, -1.111111100000000e-28, 1.000000000000000e-36
  };
  double JT3RTS[] = {
    1.000000000000000e-08, 1.000000000000000e-07, 1.000000000000000e-06, 
    1.000000000000000e-05, 1.000000000000000e-04, 1.000000000000000e-03, 
    1.000000000000000e-02, 1.000000000000000e-01
  };
  stat |= vtkTestPolynomials(JT3, 8, rootInt, roots,
                1e-9, divtol+1, limit, 
                JT3RTS, 8, 1.000000e-08, "mul(x-10^(-i),i=1..8)", false, 3, 0);

  // Testing (x-1/10)^3*(x-5/10)*(x-6/10)*(x-7/10)
  double JT4[] = {
    1.000000000000000e+00, -2.100000000000000e+00, 1.640000000000000e+00, 
    -5.860000000000000e-01, 9.690000000000000e-02, -7.370000000000000e-03, 
    2.100000000000000e-04
  };
  double JT4RTS[] = {
    1.000000000000000e-01, 5.000000000000000e-01, 6.000000000000000e-01, 
    7.000000000000000e-01
  };
  stat |= vtkTestPolynomials(JT4, 6, rootInt, roots,
                tolSturm, divtol, limit, 
                JT4RTS, 4, 1.000000e-07, "(x-1/10)^3*(x-5/10)*(x-6/10)*(x-7/10)", true, 3, 0);

  // Testing (x-1/10)^4*(x-2/10)^3*(x-3/10)^2*(x-4/10)
  double JT5[] = {
    1.000000000000000e+00, -2.000000000000000e+00, 1.750000000000000e+00, 
    -8.820000000000000e-01, 2.835000000000000e-01, -6.072000000000000e-02, 
    8.777000000000000e-03, -8.458000000000000e-04, 5.204000000000000e-05, 
    -1.848000000000000e-06, 2.880000000000000e-08
  };
  double JT5RTS[] = {
    1.000000000000000e-01, 2.000000000000000e-01, 3.000000000000000e-01, 
    4.000000000000000e-01
  };
  stat |= vtkTestPolynomials(JT5, 10, rootInt, roots,
                tolSturm, divtol, limit, 
                JT5RTS, 4, 1.000000e-07, "(x-1/10)^4*(x-2/10)^3*(x-3/10)^2*(x-4/10)", true, 3, 0);


  // Testing 25*10^9*(x-1/10)*(x-1001/1000)*(x-998/1000)*(x-100002/100000)*(x-99999/100000)
  double JT62[] = {
    2.500000000000000e+10, -1.024752500000000e+11, 1.599232247450000e+11, 
    -1.149182194640050e+11, 3.496776469345551e+10, -2.497519974450501e+09
  };
  double JT62RTS[] = {
    1.000000000000000e-01, 9.980000000000000e-01, 9.999900000000000e-01, 
    1.000020000000000e+00, 1.001000000000000e+00
  };
  stat |= vtkTestPolynomials(JT62, 5, rootInt, roots,
                tolSturm, divtol+5, limit-2, 
                JT62RTS, 5, 1.000000e-05, "25*10^9*(x-1/10)*(x-1001/1000)*(x-998/1000)*(x-100002/100000)*(x-99999/100000)", false, 3, 0);

#if !defined(_MSC_VER) || ( defined(_MSC_VER) && (_MSC_VER != 1310) )
  // Testing (x-1/10)*(x-1001/1000)*(x-998/1000)*(x-100002/100000)*(x-99999/100000)
  // This only works with the Habicht Sequence, and not on MSVC 7.1
  double JT[] = {
    JT62[0]/JT62[0], JT62[1]/JT62[0], JT62[2]/JT62[0],
    JT62[3]/JT62[0], JT62[4]/JT62[0], JT62[5]/JT62[0]
  };
  stat |= vtkTestPolynomials(JT, 5, rootInt, roots,
                tolSturm, divtol+5, limit-2, 
                JT62RTS, 5, 1.000000e-05, "(x-1/10)*(x-1001/1000)*(x-998/1000)*(x-100002/100000)*(x-99999/100000)", false, 2, 0);
#endif


  // Testing (x+1)^5
  double JT8[] = {
    1.000000000000000e+00, 5.000000000000000e+00, 1.000000000000000e+01, 
    1.000000000000000e+01, 5.000000000000000e+00, 1.000000000000000e+00
  };
  double JT8RTS[] = {
    -1.000000000000000e+00
  };
  stat |= vtkTestPolynomials(JT8, 5, rootInt, roots,
                tolSturm, divtol, limit, 
                JT8RTS, 1, 1.000000e-07, "(x+1)^5", true, 3, 0);

  rootInt[0] = -1e14;
  // Testing (x-10^(-13))*(x+10^(13))
  double JT9[] = {
    1.000000000000000e+00, 1.000000000000000e+13, -1.000000000000000e+00
  };
  double JT9RTS[] = {
    -1.000000000000000e+13, 1.000000000000000e-13
  };
  stat |= vtkTestPolynomials(JT9, 2, rootInt, roots,
                tolSturm, divtol, limit, 
                JT9RTS, 2, 1.000000e-07, "(x-10^(-13))*(x+10^(13))", false, 3, 0);

  rootInt[0] = -14;
  rootInt[1] = 1e4;
  // Testing (x-10^3)*(x-1)*(x-10^(-3))
  double P10a[] = {
    1.000000000000000e+00, -1.001001000000000e+03, 1.001001000000000e+03, 
    -1.000000000000000e+00
  };
  double P10aRTS[] = {
    1.000000000000000e-03, 1.000000000000000e+00, 1.000000000000000e+03
  };
  stat |= vtkTestPolynomials(P10a, 3, rootInt, roots,
                tolSturm, divtol, limit, 
                P10aRTS, 3, 1.000000e-07, "(x-10^3)*(x-1)*(x-10^(-3))", false, 3, 0);

  rootInt[1] = 1e7;
  // Testing (x-10^6)*(x-1)*(x-10^(-6))
  double P10b[] = {
    1.000000000000000e+00, -1.000001000001000e+06, 1.000001000001000e+06, 
    -1.000000000000000e+00
  };
  double P10bRTS[] = {
    1.000000000000000e-06, 1.000000000000000e+00, 1.000000000000000e+06
  };
  stat |= vtkTestPolynomials(P10b, 3, rootInt, roots,
                tolSturm, divtol+1, limit-1, 
                P10bRTS, 3, 1.000000e-07, "(x-10^6)*(x-1)*(x-10^(-6))", false, 3, 0);

  rootInt[1] = 1e10;
  // Testing (x-10^9)*(x-1)*(x-10^(-9))
  double P10c[] = {
    1.000000000000000e+00, -1.000000001000000e+09, 1.000000001000000e+09, 
    -1.000000000000000e+00
  };
  double P10cRTS[] = {
    1.000000000000000e-09, 1.000000000000000e+00, 1.000000000000000e+09
  };
  stat |= vtkTestPolynomials(P10c, 3, rootInt, roots,
                tolSturm, divtol+4, limit-2, 
                P10cRTS, 3, 1.000000e-07, "(x-10^9)*(x-1)*(x-10^(-9))", false, 3, 0);

  rootInt[1] = 28.1;
  cout << "------Testing set 'Igarashi Ympa'------" << endl;
  cout << 2 << " polynomials in the set." << endl;
  // Testing (x-2.35)*(x-2.37)*(x-2.39)
  double igyp00[] = {
    1.000000000000000e+00, -7.110000000000000e+00, 1.685030000000000e+01, 
    -1.331110500000000e+01
  };
  double igyp00RTS[] = {
    2.350000000000000e+00, 2.370000000000000e+00, 2.390000000000000e+00
  };
  stat |= vtkTestPolynomials(igyp00, 3, rootInt, roots,
                tolSturm, divtol, limit, 
                igyp00RTS, 3, 1.000000e-07, "(x-2.35)*(x-2.37)*(x-2.39)", false, 3, 0);

  // Testing (x-2.35)^3*(x-2.37)
  double igyp01[] = {
    1.000000000000000e+00, -9.420000000000000e+00, 3.327600000000000e+01, 
    -5.224285000000000e+01, 3.075756375000000e+01
  };
  double igyp01RTS[] = {
    2.350000000000000e+00, 2.370000000000000e+00
  };
  stat |= vtkTestPolynomials(igyp01, 4, rootInt, roots,
                tolSturm, divtol+1, limit, 
                igyp01RTS, 2, 1.000000e-07, "(x-2.35)^3*(x-2.37)", true, 3, 0);

  cout << "------Testing set 'Iliev'------" << endl;
  cout << 2 << " polynomials in the set." << endl;
  // Testing (x-1)*(x+2)^2*(x+3)^3
  double iliev01[] = {
    1.000000000000000e+00, 1.200000000000000e+01, 5.400000000000000e+01, 
    1.040000000000000e+02, 4.500000000000000e+01, -1.080000000000000e+02, 
    -1.080000000000000e+02
  };
  double iliev01RTS[] = {
    -3.000000000000000e+00, -2.000000000000000e+00, 1.000000000000000e+00
  };
  stat |= vtkTestPolynomials(iliev01, 6, rootInt, roots,
                tolSturm, divtol, limit, 
                iliev01RTS, 3, 1.000000e-07, "(x-1)*(x+2)^2*(x+3)^3", true, 3, 0);

  // Testing (x-1)^2*(x-2)^4*(x-3)^6
  double iliev02[] = {
    1.000000000000000e+00, -2.800000000000000e+01, 3.560000000000000e+02, 
    -2.716000000000000e+03, 1.383800000000000e+04, -4.956400000000000e+04, 
    1.278520000000000e+05, -2.390760000000000e+05, 3.212730000000000e+05, 
    -3.021840000000000e+05, 1.885680000000000e+05, -6.998400000000000e+04, 
    1.166400000000000e+04
  };
  double iliev02RTS[] = {
    1.000000000000000e+00, 2.000000000000000e+00, 3.000000000000000e+00
  };
  stat |= vtkTestPolynomials(iliev02, 12, rootInt, roots,
                tolSturm, divtol, limit-1, 
                iliev02RTS, 3, 1.000000e-07, "(x-1)^2*(x-2)^4*(x-3)^6", true, 3, 0);

  cout << "------Testing other sets------" << endl;
  // High multiplicities
  // (x-1)^6(x-2)^6(x-3)^6
  double polymult[] = {1., -36., 606., -6336., 46095., -247716., 1018816., -3278016., 8361951., -17033580., 27767046., 
    -36128736., 37235521., -29981196., 18442620., -8362656., 2632176., -513216., 46656.};
  double expectedmult[] = {1.,2.,3.};
  stat |= vtkTestPolynomials(polymult, 18, rootInt, roots, tolSturm, divtol, limit-1, expectedmult, 3, 1e-7, 
    "(x-1)^6(x-2)^6(x-3)^6", true, 1);

  stat |= vtkTestPolynomials(polymult, 18, rootInt, roots, tolSturm, divtol, limit, expectedmult, 3, 1e-7, 
    "(x-1)^6(x-2)^6(x-3)^6", true, 2);

  // Zeng Polynomials
  double twin01[] = {1., -3.96, 7.1366, -7.736316, 5.61584481, -2.874527064, 1.0633461368, 
    -0.286299144, 0.055658703376, -0.007616429184, 0.00069613420032, -3.8146387968e-005, 
    9.475854336e-007};
  double twinroots[] = {.2,.39,.4};

  stat |= vtkTestPolynomials(twin01, 12, rootInt, roots, tolSturm, divtol, 3, twinroots, 3, 1e-5,
    "(x-.39)^4*(x-.4)^4*(x-.2)^4", true, 1);

  stat |= vtkTestPolynomials(twin01, 12, rootInt, roots, tolSturm, divtol, 3, twinroots, 3, 1e-5,
    "(x-.39)^4*(x-.4)^4*(x-.2)^4", true, 2);

  double toh06a[] = {1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.};

  stat |= vtkTestPolynomials(toh06a, 20, rootInt, roots, tolSturm, divtol, 2, 0, 0, 1e-7,
    "1+x+x^2+\\cdots+x^20", false);

  stat |= vtkTestPolynomials(toh06a, 20, rootInt, roots, tolSturm, divtol+3, 2, 0, 0, 1e-7,
    "1+x+x^2+\\cdots+x^20", false, 1);

  stat |= vtkTestPolynomials(toh06a, 20, rootInt, roots, tolSturm, divtol+4, 1, 0, 0, 1e-7,
    "1+x+x^2+\\cdots+x^20", false, 2);

  cout << "Test non-Sequence solvers" << endl;
  // 1. find the roots of a degree 4 polynomial with a 1 double root (1) and 2
  // simple roots (2 and 3) using:
  // 1.a FerrariSolve
  // 1.b SturmBissectionSolve
  double tolLinBairstow = 1.e-12;
  double tolDirectSolvers = VTK_DBL_EPSILON;
  int mult[4];
  double P4[] = { 1., -7., 17., -17., 6. } ;
  vtkPolynomialSolversUnivariate::PrintPolynomial(cout, P4, 4 );

  // 1.a FerrariSolve
  timer->StartTimer();
  int testIntValue = vtkPolynomialSolversUnivariate::FerrariSolve( P4 + 1, roots, mult, tolDirectSolvers );
  timer->StopTimer();

  if ( testIntValue != 3 )
    {
    vtkGenericWarningMacro("FerrariSolve(x^4 -7x^3 +17x^2 -17 x +6 ) = "<<testIntValue<<" != 3");
    timer->Delete();
    return 1;
    }
  cout << "Ferrari tol=" << tolDirectSolvers
               << ", " << testIntValue << " " 
               << timer->GetElapsedTime() << "s\n";
  for ( int i = 0; i < testIntValue ; ++ i ) 
    {
    cout << roots[i]; 
    if ( mult[i] > 1 )
      {
      cout << "(" << mult[i] << ")";
      }
    cout << "\n";
    }
  double actualRoots[] = { 1., 2., 3. };
  int actualMult[] = { 2, 1, 1 };
  for ( int i = 0; i < testIntValue ; ++ i ) 
    {
    if ( fabs ( roots[i] - actualRoots[i] ) > tolRoots )
      {
      vtkGenericWarningMacro("FerrariSolve(x^4 -7x^3 +17x^2 -17 x +6, ]-4;4] ): root "<<roots[i]<<" != "<<actualRoots[i]);
      timer->Delete();
      return 1;  
      }
    if ( mult[i] != actualMult[i] )
      {
      vtkGenericWarningMacro("FerrariSolve(x^4 -7x^3 +17x^2 -17 x +6, ]-4;4] ): multiplicity "<<mult[i]<<" != "<<actualMult[i]);
      timer->Delete();
      return 1;  
      }
    }

  // 1.b SturmBisectionSolve
  double P4RTS[] = {1.,2.,3.};

  stat |= vtkTestPolynomials(P4, 4, rootInt, roots, tolSturm, divtol, limit-1, 
                P4RTS, 3, 1e-7, "(x-1)^2*(x-2)*(x-3)", true, 3);

  // 2. find the roots of a degree 5 polynomial with LinBairstowSolve
  double P5[] = { 1., -10., 35., -50., 24., 0. } ;
  vtkPolynomialSolversUnivariate::PrintPolynomial(cout, P5, 5 );

  timer->StartTimer();
  testIntValue = vtkPolynomialSolversUnivariate::LinBairstowSolve( P5, 5, roots, tolLinBairstow );
  timer->StopTimer();

  if ( testIntValue != 5 )
    {
    vtkGenericWarningMacro("LinBairstowSolve(x^5 -10x^4 +35x^3 -50x^2 +24x ) = "<<testIntValue<<" != 5");
    timer->Delete();
    return 1;
    }
  cout << "LinBairstow tol=" << tolLinBairstow << ", " 
       << testIntValue << " " 
       << timer->GetElapsedTime() << "s\n";
  for ( int i = 0; i < testIntValue ; ++ i ) cout << roots[i] << "\n";

  // 3. find the roots of a quadratic trinomial with the BisectionSolvers
  double P2[] = { 1., -2., 1. };
  double P2RTS[] = {1.};

  stat |= vtkTestPolynomials(P2, 2, rootInt, roots, tolSturm, divtol, limit-1, 
                P2RTS, 1, 1e-7, "(x-1)^2", true, 3);

  // 4. find the roots of a biquadratic trinomial with SturmBisectionSolve,
  // whose 2 double roots (-4 and 4) are also the bounds of the interval, thus
  // being a limiting case of Sturm's theorem, using:
  // 4.a FerrariSolve
  // 4.b SturmBisectionSolve

  double P4_2[] = { 1., 0., -32., 0., 256. };
  vtkPolynomialSolversUnivariate::PrintPolynomial(cout, P4_2, 4 );

  // 4.a FerrariSolve
  timer->StartTimer();
  testIntValue = vtkPolynomialSolversUnivariate::FerrariSolve( P4_2 + 1, roots, mult, tolDirectSolvers );
  timer->StopTimer();

  if ( testIntValue != 2 )
    {
    vtkGenericWarningMacro("FerrariSolve(x^4 -32x^2 +256 ) = "<<testIntValue<<" != 2");
    timer->Delete();
    return 1;
    }
  cout << "Ferrari tol=" << tolDirectSolvers
               << ", " << testIntValue << " " 
               << timer->GetElapsedTime() << "s\n";
  for ( int i = 0; i < testIntValue ; ++ i ) 
    {
    cout << roots[i]; 
    if ( mult[i] > 1 ) cout << "(" << mult[i] << ")";
    cout << "\n";
    }
  for ( int i = 0; i < testIntValue ; ++ i ) 
    {
    if ( fabs ( roots[i] ) - 4. > tolRoots )
      {
      vtkGenericWarningMacro("FerrariSolve(1*x**4-32*x**2+256, ]-4;4] ): root "<<roots[i]<<" != +/-4");
      timer->Delete();
      return 1;  
      }
    if ( mult[i] != 2 )
      {
      vtkGenericWarningMacro("FerrariSolve(1*x**4-32*x**2+256, ]-4;4] ): multiplicity "<<mult[i]<<" != 2");
      timer->Delete();
      return 1;  
      }
    }

  // 4.b SturmBisectionSolve
  rootInt[0] = -4.;
  rootInt[1] = 4.;
  double P4_2RTS[] = {-4.,4.};
  stat |= vtkTestPolynomials(P4_2, 4, rootInt, roots, tolSturm, divtol, limit-1, 
                P4_2RTS, 2, 1e-7, "(x+4)^2*(x-4)^2 on [-4,4]", true, 3, 3);
  stat |= vtkTestPolynomials(P4_2, 4, rootInt, roots, tolSturm, divtol, limit-1, 
                P4_2RTS, 2, 1e-7, "(x+4)^2*(x-4)^2 on [-4,4)", true, 3, 1);
  stat |= vtkTestPolynomials(P4_2, 4, rootInt, roots, tolSturm, divtol, limit-1, 
                P4_2RTS, 2, 1e-7, "(x+4)^2*(x-4)^2 on (-4,4]", true, 3, 2);
  stat |= vtkTestPolynomials(P4_2, 4, rootInt, roots, tolSturm, divtol, limit-1, 
                P4_2RTS, 2, 1e-7, "(x+4)^2*(x-4)^2 on (-4,4)", false, 3, 0);

  // 5. find the quadruple roots of the degree 12 polynomial (x-1)^4 (x-2)^4 (x-3)^4
  // All roots are quadruple roots, making it challenging for solvers using floating
  // point arithmetic.
  rootInt[0] = 0.;
  rootInt[1] = 20.;
  double P12[] = {
    1,
    -24,
    260,
    -1680,
    7206,
    -21600,
    46364,
    -71760,
    79441,
    -61320,
    31320,
    -9504,
    1296
  };
  double P12RTS[] = {1.,2.,3.};

   stat |= vtkTestPolynomials(P12, 12, rootInt, roots, tolSturm, divtol, limit, 
                P12RTS, 3, 1e-7, "(x-1)^4*(x-2)^4*(x-3)^4 on (0,20)", true, 3, 0);

  // 6. Find the roots of a degree 22 polynomial with SturmBisectionSolve
  rootInt[0] = -10.;
  rootInt[1] = 10.;
  double P22[] = {
    -0.0005, -0.001, 0.05, 0.1, -0.2,
    1., 0., -5.1, 0., 4., 
    -1., .2, 3., 2.2, 2.,
    -7., -.3, 3.8, 14., -16.,
    80., -97.9, 5. };
  double P22RTS[] = {-9.5799184021307155490, -4.1659457357018254697, -1.6909764377051033080, 0.053377023199573159218, 1.1281470811227336526, 1.2804679030668921769, 1.7510169549495913088, 9.9112562522641383112};

   stat |= vtkTestPolynomials(P22, 22, rootInt, roots, tolSturm, divtol, limit, 
                P22RTS, 8, 1e-7, "-0.0005*x^22 -0.001*x^21 +0.05*x^20 +0.1*x^19 -0.2*x^18 +1*x^17 -5.1*x^15 +4*x^13 -1*x^12 +0.2*x^11 +3*x^10 +2.2*x^9 +2*x^8 -7*x^7 -0.3*x^6 +3.8*x^5 +14*x^4 -16*x^3 +80*x^2 -97.9*x +5", false, 3, 0);


  timer->StartTimer();
  testIntValue = vtkPolynomialSolversUnivariate::LinBairstowSolve( P22, 22, roots, tolLinBairstow );
  timer->StopTimer();

  if ( testIntValue != 8 )
    {
    vtkGenericWarningMacro("LinBairstowSolve( -0.0005x^22 -0.001x^21 +0.05x^20 +0.1x^19 -0.2x^18 +1x^17 -5.1x^15 +4x^13 -1x^12 +0.2x^11 +3x^10 +2.2x^9 +2x^8 -7x^7 -0.3x^6 +3.8x^5 +14x^4 -16x^3 +80x^2 -97.9x +5, ]-10;10] ): "<<testIntValue<<" root(s) instead of 8");
    timer->Delete();
    return 1;
    }
  cout << "LinBairstow tol=" << tolLinBairstow << ", " 
       << testIntValue << " " 
       << timer->GetElapsedTime() << "s\n";
  for ( int i = 0; i < testIntValue ; ++ i ) cout << roots[i] << "\n";

  // 7. Solving x^4 + 3x^3 - 4x + 1e-18 = 0 illustrates how the Ferrari solver
  // filters some numerical noise by noticing there is a double root.
  // This also exercises a case not otherwise tested.
  double P4_3[] = { 1., 3., -4., 0., 1.e-18 };

  timer->StartTimer();
  testIntValue = vtkPolynomialSolversUnivariate::FerrariSolve( P4_3 + 1, roots, mult, tolDirectSolvers );
  timer->StopTimer();

  if ( testIntValue != 3 )
    {
    vtkGenericWarningMacro("FerrariSolve(x^4 +3x^3 -3x^2 +1e-18 ) = "<<testIntValue<<" != 3");
    timer->Delete();
    return 1;
    }
  cout << "Ferrari tol=" << tolDirectSolvers
               << ", " << testIntValue << " " 
               << timer->GetElapsedTime() << "s\n";
  for ( int i = 0; i < testIntValue ; ++ i ) 
    {
    cout << roots[i]; 
    if ( mult[i] > 1 ) cout << "(" << mult[i] << ")";
    cout << "\n";
    }

  // 8. Solving x(x - 10^-4)^2 = 0 illustrates how the Tartaglia-Cardan solver
  // filters some numerical noise by noticing there is a double root (that
  // SolveCubic does not notice).
  double P3[] = { 1., -2.e-4, 1.e-8, 0.};

#if 0
  double r1, r2, r3;
  int nr;
  testIntValue = vtkPolynomialSolversUnivariate::SolveCubic( P3[0], P3[1], P3[2], P3[3], &r1, &r2, &r3, &nr );
  if ( testIntValue != 2 )
    {
    vtkGenericWarningMacro("SolveCubic returned "<<testIntValue<<" != 3");
    timer->Delete();
    return 1;
    }
#endif // 0  

  timer->StartTimer();
  testIntValue = vtkPolynomialSolversUnivariate::TartagliaCardanSolve( P3 + 1, roots, mult, tolDirectSolvers );
  timer->StopTimer();

  if ( testIntValue != 2 )
    {
    vtkGenericWarningMacro("TartagliaCardanSolve returned "<<testIntValue<<" != 2");
    timer->Delete();
    return 1;
    }
  cout << "TartagliaCardan tol=" << tolDirectSolvers
               << ", " << testIntValue << " " 
               << timer->GetElapsedTime() << "s\n";
  for ( int i = 0; i < testIntValue ; ++ i ) 
    {
    cout << roots[i]; 
    if ( mult[i] > 1 ) cout << "(" << mult[i] << ")";
    cout << "\n";
    }

  // 9. Solving x^3+x^2+x+1 = 0 to exercise a case not otherwise tested.
  double P3_2[] = { 1., 1., 1., 1.};

#if 0
  double r1, r2, r3;
  int nr;
  testIntValue = vtkPolynomialSolversUnivariate::SolveCubic( P3_2[0], P3_2[1], P3_2[2], P3_2[3], &r1, &r2, &r3, &nr );
  if ( testIntValue != 1 )
    {
    vtkGenericWarningMacro("SolveCubic returned "<<testIntValue<<" != 1");
    timer->Delete();
    return 1;
    }
#endif // 0  

  timer->StartTimer();
  testIntValue = vtkPolynomialSolversUnivariate::TartagliaCardanSolve( P3_2 + 1, roots, mult, tolDirectSolvers );
  timer->StopTimer();

  if ( testIntValue != 1 )
    {
    vtkGenericWarningMacro("TartagliaCardanSolve returned "<<testIntValue<<" != 1");
    timer->Delete();
    return 1;
    }
  cout << "TartagliaCardan tol=" << tolDirectSolvers
               << ", " << testIntValue << " " 
               << timer->GetElapsedTime() << "s\n";
  for ( int i = 0; i < testIntValue ; ++ i ) 
    {
    cout << roots[i]; 
    if ( mult[i] > 1 ) cout << "(" << mult[i] << ")";
    cout << "\n";
    }

  // 10. Solving x^3 - 2e-6 x^2 + 0.999999999999999e-12 x = 0 to test a nearly degenerate case.
  double P3_3[] = { 1., -2.e-6 , .999999999999999e-12, 0.};

#if 0
  double r1, r2, r3;
  int nr;
  testIntValue = vtkPolynomialSolversUnivariate::SolveCubic( P3_3[0], P3_3[1], P3_3[2], P3_3[3], &r1, &r2, &r3, &nr );
  if ( testIntValue != 3 )
    {
    vtkGenericWarningMacro("SolveCubic returned "<<testIntValue<<" != 3");
    timer->Delete();
    return 1;
    }
#endif // 0  

  timer->StartTimer();
  testIntValue = vtkPolynomialSolversUnivariate::TartagliaCardanSolve( P3_3 + 1, roots, mult, tolDirectSolvers );
  timer->StopTimer();

  if ( testIntValue != 3 )
    {
    vtkGenericWarningMacro("TartagliaCardanSolve returned "<<testIntValue<<" != 3");
    timer->Delete();
    return 1;
    }
  cout << "TartagliaCardan tol=" << tolDirectSolvers
               << ", " << testIntValue << " " 
               << timer->GetElapsedTime() << "s\n";
  cout.precision( 9 );
  for ( int i = 0; i < testIntValue ; ++ i ) 
    {
    cout << roots[i]; 
    if ( mult[i] > 1 ) cout << "(" << mult[i] << ")";
    cout << "\n";
    }

  // 11. Find the roots of a sparse degree 10 polynomial with SturmBisectionSolve to exercise a particular
  // case of the Euclidean division routine, where the remainder does not have maximal degree. 
  rootInt[0] = -10.;
  rootInt[1] = 10.;
  double P10[] = { 76., 0., 0., 0., 0., 0., 0., 0., 95., 0., -14. };
  double P10RTS[] = {-0.38381365387613186613, 0.38381365386885590851};

   stat |= vtkTestPolynomials(P10, 10, rootInt, roots, tolSturm, divtol, limit, 
                P10RTS, 2, 1e-7, "76*x^10 +95*x^2 -14", false, 3, 0);


  // 11. Find the roots of a sparse degree 10 polynomial with SturmBisectionSolve to exercise a particular
  // case of the Euclidean division routine, where the remainder does not have maximal degree. 
  rootInt[0] = -10.;
  rootInt[1] = 10.;
  double P84[] = 
    {
      55.000000,
      0.000000,
      0.000000,
      0.000000,
      0.000000,
      0.000000,
      0.000000,
      0.000000,
      0.000000,
      0.000000,
      0.000000,
      0.000000,
      -79.000000,
      90.000000,
      0.000000,
      0.000000,
      0.000000,
      0.000000,
      0.000000,
      0.000000,
      0.000000,
      0.000000,
      0.000000,
      0.000000,
      0.000000,
      0.000000,
      0.000000,
      0.000000,
      0.000000,
      0.000000,
      0.000000,
      0.000000,
      0.000000,
      0.000000,
      0.000000,
      0.000000,
      0.000000,
      0.000000,
      0.000000,
      0.000000,
      37.000000,
      0.000000,
      0.000000,
      0.000000,
      0.000000,
      0.000000,
      0.000000,
      0.000000,
      0.000000,
      0.000000,
      0.000000,
      0.000000,
      0.000000,
      0.000000,
      0.000000,
      0.000000,
      0.000000,
      0.000000,
      0.000000,
      0.000000,
      0.000000,
      0.000000,
      0.000000,
      49.000000,
      0.000000,
      0.000000,
      0.000000,
      0.000000,
      0.000000,
      0.000000,
      0.000000,
      0.000000,
      0.000000,
      0.000000,
      0.000000,
      0.000000,
      0.000000,
      0.000000,
      0.000000,
      0.000000,
      0.000000,
      0.000000,
      0.000000,
      0.000000,
      -12.000000
    };
  double P84RTS[] = {-1.0923995943740010262, 0.92872986290603876114};

  stat |= vtkTestPolynomials(P84, 84, rootInt, roots, tolSturm, divtol, limit, 
                P84RTS, 2, 1e-7, "55*x^84-79*x^72+90*x^71+37*x^44+49*x^21-12", false, 3, 0);


  timer->Delete();
  return stat;
}