File: vtkRungeKutta45.h

package info (click to toggle)
vtk 5.8.0-13
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 130,524 kB
  • sloc: cpp: 1,129,256; ansic: 708,203; tcl: 48,526; python: 20,875; xml: 6,779; yacc: 4,208; perl: 3,121; java: 2,788; lex: 931; sh: 660; asm: 471; makefile: 299
file content (123 lines) | stat: -rw-r--r-- 4,856 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkRungeKutta45.h

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
// .NAME vtkRungeKutta45 - Integrate an initial value problem using 5th
// order Runge-Kutta method with adaptive stepsize control.

// .SECTION Description
// This is a concrete sub-class of vtkInitialValueProblemSolver.
// It uses a 5th order Runge-Kutta method with stepsize control to obtain 
// the values of a set of functions at the next time step. The stepsize
// is adjusted by calculating an estimated error using an embedded 4th
// order Runge-Kutta formula:
// Press, W. H. et al., 1992, Numerical Recipes in Fortran, Second
// Edition, Cambridge University Press
// Cash, J.R. and Karp, A.H. 1990, ACM Transactions on Mathematical
// Software, vol 16, pp 201-222

// .SECTION See Also
// vtkInitialValueProblemSolver vtkRungeKutta4 vtkRungeKutta2 vtkFunctionSet

#ifndef __vtkRungeKutta45_h
#define __vtkRungeKutta45_h

#include "vtkInitialValueProblemSolver.h"

class VTK_COMMON_EXPORT vtkRungeKutta45 : public vtkInitialValueProblemSolver
{
public:
  vtkTypeMacro(vtkRungeKutta45,vtkInitialValueProblemSolver);
  void PrintSelf(ostream& os, vtkIndent indent);

  // Description:
  // Construct a vtkRungeKutta45 with no initial FunctionSet.
  static vtkRungeKutta45 *New();

  // Description:
  // Given initial values, xprev , initial time, t and a requested time 
  // interval, delT calculate values of x at t+delTActual (xnext).
  // Possibly delTActual != delT. This may occur
  // because this solver supports adaptive stepsize control. It tries 
  // to change to stepsize such that
  // the (estimated) error of the integration is less than maxError.
  // The solver will not set the stepsize smaller than minStep or
  // larger than maxStep (note that maxStep and minStep should both
  // be positive, whereas delT can be negative).
  // Also note that delT is an in/out argument. vtkRungeKutta45
  // will modify delT to reflect the best (estimated) size for the next
  // integration step.
  // An estimated value for the error is returned (by reference) in error.
  // This is the norm of the error vector if there are more than
  // one function to be integrated.
  // This method returns an error code representing the nature of
  // the failure:
  // OutOfDomain = 1,
  // NotInitialized = 2,
  // UnexpectedValue = 3
  virtual int ComputeNextStep(double* xprev, double* xnext, double t,
                              double& delT, double maxError, double& error) 
    {
      double minStep = delT;
      double maxStep = delT;
      double delTActual;
      return this->ComputeNextStep(xprev, 0, xnext, t, delT, delTActual,
                                   minStep, maxStep, maxError, error);
    }
  virtual int ComputeNextStep(double* xprev, double* dxprev, double* xnext, 
                              double t, double& delT, 
                              double maxError, double& error)
    {
      double minStep = delT;
      double maxStep = delT;
      double delTActual;
      return this->ComputeNextStep(xprev, dxprev, xnext, t, delT, delTActual,
                                   minStep, maxStep, maxError, error);
    }
  virtual int ComputeNextStep(double* xprev, double* xnext, 
                              double t, double& delT, double& delTActual,
                              double minStep, double maxStep,
                              double maxError, double& error)
    {
      return this->ComputeNextStep(xprev, 0, xnext, t, delT, delTActual,
                                   minStep, maxStep, maxError, error);
    }
  virtual int ComputeNextStep(double* xprev, double* dxprev, double* xnext, 
                              double t, double& delT, double& delTActual,
                              double minStep, double maxStep, 
                              double maxError, double& error);

protected:
  vtkRungeKutta45();
  ~vtkRungeKutta45();

  virtual void Initialize();

  // Cash-Karp parameters
  static double A[5];
  static double B[5][5];
  static double C[6];
  static double DC[6];

  double* NextDerivs[6];

  int ComputeAStep(double* xprev, double* dxprev, double* xnext, double t, 
                   double& delT,  double& error);

private:
  vtkRungeKutta45(const vtkRungeKutta45&);  // Not implemented.
  void operator=(const vtkRungeKutta45&);  // Not implemented.
};

#endif